The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

MT-ND3  -  mitochondrially encoded NADH dehydrogenase 3

Homo sapiens

Synonyms: MTND3, NAD3, NADH dehydrogenase subunit 3, NADH dehydrogenase, subunit 3 (complex I), NADH-ubiquinone oxidoreductase chain 3, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MT-ND3

 

High impact information on MT-ND3

  • Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria [6].
  • SNP 10398G causes a nonconservative amino acid change from threonine to alanine within the NADH dehydrogenase 3 (ND3) of complex I. After stratification by sex, this decrease in risk appeared stronger in women than in men (OR 0.43; 95% CI 0.27-0.71; P=.0009) [7].
  • The extent to which the increased variation in ND3 and ND6 is a general phenomenon applicable to all subjects rather than a finding specific to cytopathies cannot be stated with certainty given the small control group [8].
  • Both mutations cause disproportionately greater reductions in enzyme activity than in the amount of fully assembled complex I, suggesting the ND3 subunit plays an unknown but important role in electron transport, proton pumping, or ubiquinone binding [9].
  • Subsequent analysis of the mitochondrial genome identified a novel heteroplasmic T10191C mutation in the ND3 gene [2].
 

Biological context of MT-ND3

  • Fulminant neurological deterioration in a neonate with Leigh syndrome due to a maternally transmitted missense mutation in the mitochondrial ND3 gene [10].
  • Subsequent analysis of the mitochondrial genome revealed a homoplastic T10191C mutation in the ND3 gene (in blood and muscle), resulting in a substitution of serine to proline [10].
  • Analysis of ND3 mRNA turnover in cells with siRNA-mediated knock-down of the mitochondrial poly(A) polymerase shows that strongly decreased polyadenylation does not markedly affect the decay of this transcript [11].
  • Five novel homoplasmic sequence variants, including two missense mutations (ND2 4924 G/A, ND3 10192 C/T), were detected in mitochondrial genes of complex I in four of the pairs [12].
  • We infer the phylogenetic relationships of finescale shiners of the genus Lythrurus, a group of 11 species of freshwater minnows widely distributed in eastern North America, using DNA sequences from the ND2 (1047bp), ATPase8 and 6 (823bp), and ND3 (421bp) mitochondrial protein-coding genes [13].
 

Associations of MT-ND3 with chemical compounds

  • The transition changes a serine residue into a proline, in a highly conserved region of the NADH dehydrogenase subunit 3 (ND3) [1].
  • Investigation of the mt-mRNA decay after thiamphenicol treatment indicated that three transcripts (ND2, ND3 and Cyt. b) are significantly stabilized after inhibition of mitochondrial translation [11].
  • The phylogenetic relationships among 33 of these genera were reconstructed using mitochondrial DNA (mtDNA) sequence data from the ND3, ND4L, arginine tRNA, and ND4 genes, which we show to be evolving at the same rate [14].
  • Two regions of the mtDNA of Atlantic herring (Clupea harengus), ND3/4 and ND5/6, were surveyed by RFLP analysis to assess the effects of marker variability on the power of statistical tests [15].
  • Gas-phase H/D exchange of sodiated glycine oligomers with ND3: exchange kinetics do not reflect parent ion structures [16].
 

Other interactions of MT-ND3

  • The 10191T>C mutation in MTND3 and the 14487T>C mutation in MTND6 were present in two probands with Leigh's-like and Leigh's syndrome, respectively [17].
  • A significant association was observed between one SNP, A10398G, resulting in a Thr114Ala substitution in the ND3 subunit, and the primary LHON mutation [18].
  • The substitution per site of ATP6, the proton conducting subunit of ATPsynthase, CYTB, the core subunit of ubiquinone oxidoreductase that participate in both electron and proton transport, and ND3, a subunit of NADH dehydrogenase, showed the strongest correlations with longevity [19].
  • One C deletion in MTND5 and one T insertion in the MTND3 gene resulted in frameshift mutations in two tumors [20].
  • We investigated phylogenetic relationships within this genus using mitochondrial DNA sequence data from the ND3, ND2 and cytochrome b genes [21].
 

Analytical, diagnostic and therapeutic context of MT-ND3

  • Northern blot and slot blot hybridization confirmed that the expression levels of ND3, ATPase 6 and 16S rRNA were elevated in senescent cells of all four strains [22].
  • A questionnaire on preferences and anticipated barriers, anticipated benefits, and quality of life for three in-center IHD schedules (daytime 2 hr six times/week [DHD], nocturnal 8 hr three times/week [ND3], and nocturnal 8 hr six times/week [ND6]) was administered to 100 chronic hemodialysis patients [23].
  • The number of labile hydrogens, x, could easily be determined from a comparison of ESI spectra obtained with N2 and with ND3 as the nebulizer gas [24].

References

  1. A new mitochondrial DNA mutation in ND3 gene causing severe Leigh syndrome with early lethality. Crimi, M., Papadimitriou, A., Galbiati, S., Palamidou, P., Fortunato, F., Bordoni, A., Papandreou, U., Papadimitriou, D., Hadjigeorgiou, G.M., Drogari, E., Bresolin, N., Comi, G.P. Pediatr. Res. (2004) [Pubmed]
  2. Progressive mitochondrial disease resulting from a novel missense mutation in the mitochondrial DNA ND3 gene. Taylor, R.W., Singh-Kler, R., Hayes, C.M., Smith, P.E., Turnbull, D.M. Ann. Neurol. (2001) [Pubmed]
  3. Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson's disease in Italians. Ghezzi, D., Marelli, C., Achilli, A., Goldwurm, S., Pezzoli, G., Barone, P., Pellecchia, M.T., Stanzione, P., Brusa, L., Bentivoglio, A.R., Bonuccelli, U., Petrozzi, L., Abbruzzese, G., Marchese, R., Cortelli, P., Grimaldi, D., Martinelli, P., Ferrarese, C., Garavaglia, B., Sangiorgi, S., Carelli, V., Torroni, A., Albanese, A., Zeviani, M. Eur. J. Hum. Genet. (2005) [Pubmed]
  4. Identification of amyloid-beta 1-42 binding protein fragments by screening of a human brain cDNA library. Munguia, M.E., Govezensky, T., Martinez, R., Manoutcharian, K., Gevorkian, G. Neurosci. Lett. (2006) [Pubmed]
  5. Detection of mitochondrial genome depletion by a novel cDNA in renal cell carcinoma. Selvanayagam, P., Rajaraman, S. Lab. Invest. (1996) [Pubmed]
  6. Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria. Schuster, W., Wissinger, B., Unseld, M., Brennicke, A. EMBO J. (1990) [Pubmed]
  7. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. van der Walt, J.M., Nicodemus, K.K., Martin, E.R., Scott, W.K., Nance, M.A., Watts, R.L., Hubble, J.P., Haines, J.L., Koller, W.C., Lyons, K., Pahwa, R., Stern, M.B., Colcher, A., Hiner, B.C., Jankovic, J., Ondo, W.G., Allen, F.H., Goetz, C.G., Small, G.W., Mastaglia, F., Stajich, J.M., McLaurin, A.C., Middleton, L.T., Scott, B.L., Schmechel, D.E., Pericak-Vance, M.A., Vance, J.M. Am. J. Hum. Genet. (2003) [Pubmed]
  8. Mitochondrial DNA polymorphism in disease: a possible contributor to respiratory dysfunction. Lertrit, P., Kapsa, R.M., Jean-Francois, M.J., Thyagarajan, D., Noer, A.S., Marzuki, S., Byrne, E. Hum. Mol. Genet. (1994) [Pubmed]
  9. De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. McFarland, R., Kirby, D.M., Fowler, K.J., Ohtake, A., Ryan, M.T., Amor, D.J., Fletcher, J.M., Dixon, J.W., Collins, F.A., Turnbull, D.M., Taylor, R.W., Thorburn, D.R. Ann. Neurol. (2004) [Pubmed]
  10. Fulminant neurological deterioration in a neonate with Leigh syndrome due to a maternally transmitted missense mutation in the mitochondrial ND3 gene. Leshinsky-Silver, E., Lev, D., Tzofi-Berman, Z., Cohen, S., Saada, A., Yanoov-Sharav, M., Gilad, E., Lerman-Sagie, T. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  11. Differential stability of mitochondrial mRNA in HeLa cells. Piechota, J., Tomecki, R., Gewartowski, K., Szczesny, R., Dmochowska, A., Kudła, M., Dybczyńska, L., Stepien, P.P., Bartnik, E. Acta Biochim. Pol. (2006) [Pubmed]
  12. Parkinson disease: analysis of mitochondrial DNA in monozygotic twins. Kösel, S., Grasbon-Frodl, E.M., Hagenah, J.M., Graeber, M.B., Vieregge, P. Neurogenetics (2000) [Pubmed]
  13. Phylogeny of finescale shiners of the genus Lythrurus (Cypriniformes: Cyprinidae) inferred from four mitochondrial genes. Pramuk, J.B., Grose, M.J., Clarke, A.L., Greenbaum, E., Bonaccorso, E., Guayasamin, J.M., Smith-Pardo, A.H., Benz, B.W., Harris, B.R., Siegfreid, E., Reid, Y.R., Holcroft-Benson, N., Wiley, E.O. Mol. Phylogenet. Evol. (2007) [Pubmed]
  14. Molecular systematics and paleobiogeography of the South American sigmodontine rodents. Engel, S.R., Hogan, K.M., Taylor, J.F., Davis, S.K. Mol. Biol. Evol. (1998) [Pubmed]
  15. Haplotype frequency distribution and discriminatory power of two mtDNA fragments in a marine pelagic teleost (Atlantic herring, Clupea harengus). Hauser, L., Turan, C., Carvalho, G.R. Heredity (2001) [Pubmed]
  16. Gas-phase H/D exchange of sodiated glycine oligomers with ND3: exchange kinetics do not reflect parent ion structures. Cox, H.A., Julian, R.R., Lee, S.W., Beauchamp, J.L. J. Am. Chem. Soc. (2004) [Pubmed]
  17. Secondary metabolic effects in complex I deficiency. Esteitie, N., Hinttala, R., Wibom, R., Nilsson, H., Hance, N., Naess, K., Teär-Fahnehjelm, K., von Döbeln, U., Majamaa, K., Larsson, N.G. Ann. Neurol. (2005) [Pubmed]
  18. Asian-specific mtDNA backgrounds associated with the primary G11778A mutation of Leber's hereditary optic neuropathy. Sudoyo, H., Suryadi, H., Lertrit, P., Pramoonjago, P., Lyrawati, D., Marzuki, S. J. Hum. Genet. (2002) [Pubmed]
  19. Longevity and the evolution of the mitochondrial DNA-coded proteins in mammals. Rottenberg, H. Mech. Ageing Dev. (2006) [Pubmed]
  20. Somatic mitochondrial DNA mutations in human chromophobe renal cell carcinomas. Nagy, A., Wilhelm, M., Sükösd, F., Ljungberg, B., Kovacs, G. Genes Chromosomes Cancer (2002) [Pubmed]
  21. Molecular systematics of a speciose, cosmopolitan songbird genus: Defining the limits of, and relationships among, the Turdus thrushes. Voelker, G., Rohwer, S., Bowie, R.C., Outlaw, D.C. Mol. Phylogenet. Evol. (2007) [Pubmed]
  22. Enhanced expression of mitochondrial genes in senescent endothelial cells and fibroblasts. Kumazaki, T., Sakano, T., Yoshida, T., Hamada, K., Sumida, H., Teranishi, Y., Nishiyama, M., Mitsui, Y. Mech. Ageing Dev. (1998) [Pubmed]
  23. Patient preferences for in-center intense hemodialysis. Ramkumar, N., Beddhu, S., Eggers, P., Pappas, L.M., Cheung, A.K. Hemodialysis international. International Symposium on Home Hemodialysis (2005) [Pubmed]
  24. Mass spectral characterization of tetracyclines by electrospray ionization, H/D exchange, and multiple stage mass spectrometry. Kamel, A.M., Fouda, H.G., Brown, P.R., Munson, B. J. Am. Soc. Mass Spectrom. (2002) [Pubmed]
 
WikiGenes - Universities