The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Optic Nerve

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Optic Nerve


Psychiatry related information on Optic Nerve


High impact information on Optic Nerve


Chemical compound and disease context of Optic Nerve


Biological context of Optic Nerve


Anatomical context of Optic Nerve


Associations of Optic Nerve with chemical compounds


Gene context of Optic Nerve

  • In vitro, netrin-1 induces a complex growth cone morphology reminiscent of that at the optic nerve head, a site of netrin-1 expression in vivo [33].
  • Because PAX2 gene mutations were detected in papillorenal syndrome, alternation of PAX2 function by PAX6 mutations may affect phenotypic manifestations of optic-nerve malformations [34].
  • DMPK transcripts were detected in fetal eyes and in adult conjunctival and corneal epithelia, uvea, cellular layers of the retina, optic nerve and in the sclera [35].
  • As Pitx2 is not expressed in the optic stalk, an essential function of PITX2 protein in neural crest is to regulate an extrinsic factor(s) required for development of the optic nerve [36].
  • (1) RGCs express both Shh mRNA and protein, whereas the optic nerve contains the protein but not the mRNA [37].

Analytical, diagnostic and therapeutic context of Optic Nerve


  1. Mutation of the gene in a family with optic nerve colobomas, renal anomolies and vesicoureteral reflux. Sanyanusin, P., Schimmenti, L.A., McNoe, T.A., Ward, T.A., Pierpont, M.E., Sullivan, M.J., Dobyns, W.B., Eccles, M.R. Nat. Genet. (1996) [Pubmed]
  2. Antigenic and functional characterization of a rat central nervous system-derived cell line immortalized by a retroviral vector. Geller, H.M., Dubois-Dalcq, M. J. Cell Biol. (1988) [Pubmed]
  3. Glioblastoma infiltration into central nervous system tissue in vitro: involvement of a metalloprotease. Paganetti, P.A., Caroni, P., Schwab, M.E. J. Cell Biol. (1988) [Pubmed]
  4. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Matute, C., Sánchez-Gómez, M.V., Martínez-Millán, L., Miledi, R. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  5. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Kipnis, J., Yoles, E., Porat, Z., Cohen, A., Mor, F., Sela, M., Cohen, I.R., Schwartz, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  6. Synucleins in ocular tissues. Surguchov, A., McMahan, B., Masliah, E., Surgucheva, I. J. Neurosci. Res. (2001) [Pubmed]
  7. Traumatic porencephalic cyst of the brain. Yang, D.N., Townsend, J.C., Ilsen, P.F., Bright, D.C., Welton, T.H. Journal of the American Optometric Association. (1997) [Pubmed]
  8. Architecture of the optic chiasm and the mechanisms that sculpt its development. Jeffery, G. Physiol. Rev. (2001) [Pubmed]
  9. Cancer-associated retinopathy (CAR syndrome) with antibodies reacting with retinal, optic-nerve, and cancer cells. Thirkill, C.E., FitzGerald, P., Sergott, R.C., Roth, A.M., Tyler, N.K., Keltner, J.L. N. Engl. J. Med. (1989) [Pubmed]
  10. Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation. Raff, M.C., Abney, E.R., Fok-Seang, J. Cell (1985) [Pubmed]
  11. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Höpker, V.H., Shewan, D., Tessier-Lavigne, M., Poo, M., Holt, C. Nature (1999) [Pubmed]
  12. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Raff, M.C., Lillien, L.E., Richardson, W.D., Burne, J.F., Noble, M.D. Nature (1988) [Pubmed]
  13. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., Just, W.W. Hum. Mol. Genet. (2003) [Pubmed]
  14. Endogenous GABA attenuates CNS white matter dysfunction following anoxia. Fern, R., Waxman, S.G., Ransom, B.R. J. Neurosci. (1995) [Pubmed]
  15. Contrast-enhanced MRI in acute optic neuritis: relationship to visual performance. Kupersmith, M.J., Alban, T., Zeiffer, B., Lefton, D. Brain (2002) [Pubmed]
  16. Methanol optic neuropathy: a histopathological study. Sharpe, J.A., Hostovsky, M., Bilbao, J.M., Rewcastle, N.B. Neurology (1982) [Pubmed]
  17. Axon function persists during anoxia in mammalian white matter. Tekkök, S.B., Brown, A.M., Ransom, B.R. J. Cereb. Blood Flow Metab. (2003) [Pubmed]
  18. Serotonin shifts the phase of the circadian rhythm from the Aplysia eye. Corrent, G., McAdoo, D.J., Eskin, A. Science (1978) [Pubmed]
  19. Recovery of visual response of injured adult rat optic nerves treated with transglutaminase. Eitan, S., Solomon, A., Lavie, V., Yoles, E., Hirschberg, D.L., Belkin, M., Schwartz, M. Science (1994) [Pubmed]
  20. Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. Frisén, J., Johansson, C.B., Török, C., Risling, M., Lendahl, U. J. Cell Biol. (1995) [Pubmed]
  21. Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Newton, J.M., Cohen-Barak, O., Hagiwara, N., Gardner, J.M., Davisson, M.T., King, R.A., Brilliant, M.H. Am. J. Hum. Genet. (2001) [Pubmed]
  22. Differentiation-specific effects of LHON mutations introduced into neuronal NT2 cells. Wong, A., Cavelier, L., Collins-Schramm, H.E., Seldin, M.F., McGrogan, M., Savontaus, M.L., Cortopassi, G.A. Hum. Mol. Genet. (2002) [Pubmed]
  23. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Le Bras, B., Barallobre, M.J., Homman-Ludiye, J., Ny, A., Wyns, S., Tammela, T., Haiko, P., Karkkainen, M.J., Yuan, L., Muriel, M.P., Chatzopoulou, E., Bréant, C., Zalc, B., Carmeliet, P., Alitalo, K., Eichmann, A., Thomas, J.L. Nat. Neurosci. (2006) [Pubmed]
  24. Notch receptor activation inhibits oligodendrocyte differentiation. Wang, S., Sdrulla, A.D., diSibio, G., Bush, G., Nofziger, D., Hicks, C., Weinmaster, G., Barres, B.A. Neuron (1998) [Pubmed]
  25. EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Anchan, R.M., Reh, T.A., Angello, J., Balliet, A., Walker, M. Neuron (1991) [Pubmed]
  26. A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction. Carvalho, L.R., Woods, K.S., Mendonca, B.B., Marcal, N., Zamparini, A.L., Stifani, S., Brickman, J.M., Arnhold, I.J., Dattani, M.T. J. Clin. Invest. (2003) [Pubmed]
  27. PDGF A chain homodimers drive proliferation of bipotential (O-2A) glial progenitor cells in the developing rat optic nerve. Pringle, N., Collarini, E.J., Mosley, M.J., Heldin, C.H., Westermark, B., Richardson, W.D. EMBO J. (1989) [Pubmed]
  28. In vivo release of glutamate and aspartate following optic nerve stimulation. Canzek, V., Wolfensberger, M., Amsler, U., Cuénod, M. Nature (1981) [Pubmed]
  29. Topological distribution of different forms of neural cell adhesion molecule in the developing chick visual system. Schlosshauer, B., Schwarz, U., Rutishauser, U. Nature (1984) [Pubmed]
  30. Octreotide and related somatostatin analogs in the diagnosis and treatment of pituitary disease and somatostatin receptor scintigraphy. Lamberts, S.W., Hofland, L.J., de Herder, W.W., Kwekkeboom, D.J., Reubi, J.C., Krenning, E.P. Frontiers in neuroendocrinology. (1993) [Pubmed]
  31. Isolation of 10-nm filaments from astrocytes in the mouse optic nerve. Tsukita, S., Ishikawa, H., Kurokawa, M. J. Cell Biol. (1981) [Pubmed]
  32. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Eells, J.T., Henry, M.M., Summerfelt, P., Wong-Riley, M.T., Buchmann, E.V., Kane, M., Whelan, N.T., Whelan, H.T. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  33. Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. de la Torre, J.R., Höpker, V.H., Ming, G.L., Poo, M.M., Tessier-Lavigne, M., Hemmati-Brivanlou, A., Holt, C.E. Neuron (1997) [Pubmed]
  34. Mutations of the PAX6 gene detected in patients with a variety of optic-nerve malformations. Azuma, N., Yamaguchi, Y., Handa, H., Tadokoro, K., Asaka, A., Kawase, E., Yamada, M. Am. J. Hum. Genet. (2003) [Pubmed]
  35. Characterization of the expression of DMPK and SIX5 in the human eye and implications for pathogenesis in myotonic dystrophy. Winchester, C.L., Ferrier, R.K., Sermoni, A., Clark, B.J., Johnson, K.J. Hum. Mol. Genet. (1999) [Pubmed]
  36. Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Evans, A.L., Gage, P.J. Hum. Mol. Genet. (2005) [Pubmed]
  37. A role for Sonic hedgehog in axon-to-astrocyte signalling in the rodent optic nerve. Wallace, V.A., Raff, M.C. Development (1999) [Pubmed]
  38. The growth and organization of the optic nerve and tract in juvenile and adult goldfish. Easter, S.S., Rusoff, A.C., Kish, P.E. J. Neurosci. (1981) [Pubmed]
  39. Paraneoplastic autoimmune optic neuritis with retinitis defined by CRMP-5-IgG. Cross, S.A., Salomao, D.R., Parisi, J.E., Kryzer, T.J., Bradley, E.A., Mines, J.A., Lam, B.L., Lennon, V.A. Ann. Neurol. (2003) [Pubmed]
  40. Expression of glutamate receptor genes in white matter: developing and adult rat optic nerve. Jensen, A.M., Chiu, S.Y. J. Neurosci. (1993) [Pubmed]
  41. Deficiency in matrix metalloproteinase gelatinase B (MMP-9) protects against retinal ganglion cell death after optic nerve ligation. Chintala, S.K., Zhang, X., Austin, J.S., Fini, M.E. J. Biol. Chem. (2002) [Pubmed]
WikiGenes - Universities