The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Unchanged glutamine synthetase activity and increased NMDA receptor density in epileptic human neocortex: implications for the pathophysiology of epilepsy.

We investigated whether alterations in glutamate metabolising glutamine synthetase activity occur in human epileptic neocortex, as shown previously for human epileptic hippocampus [Eid, T., Thomas, M.J., Spencer, D.D., Rundén-Pran, E., Lai, J.C.K., Malthankar, G.V., Kim, J.H., Danbolt, N.C., Ottersen, O.P., de Lanerolle, N.C., 2004. Loss of glutamine synthetase in the human epileptic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28-37]. Glutamine synthetase activity was equivalent in both non-epileptic and epileptic human neocortex. Epileptic tissue, however, was characterised by a 37% increase in the density of synaptosomal NMDA receptor sites compared to non-epileptic tissue, as revealed by a radioligand binding assay (B max(non-epileptic) 1.45 pmol/mg protein and B max(epileptic) 1.99 pmol/mg protein, P < 0.05). Our findings shed some doubts on a role of glutamine synthetase in the pathophysiology of epilepsy in the neocortex. However, the detection of a significantly reduced enzymatic activity in the epileptic amygdala supports the assumption that the enzyme defect is localized to the epileptic mesial temporal lobe of corresponding patients.[1]

References

 
WikiGenes - Universities