The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders.

Inherited defect in very-long-chain acyl-CoA dehydrogenase (VLCAD), a mitochondrial enzyme catalyzing the initial step of long-chain fatty acid beta-oxidation (FAO), is one of the most frequent FAO enzyme defects. VLCAD deficiency is associated with clinical manifestations varying in severity, tissue involvement and age of onset. The molecular basis of VLCAD deficiency has been elucidated but therapeutic approaches are quite limited. In this study, we tested the hypothesis that fibrates, acting as agonist of peroxisome proliferator-activated receptors (PPARs), might stimulate FAO in VLCAD-deficient cells. We demonstrate that addition of bezafibrate or fenofibric acid in the culture medium induced a dose-dependent (up to 3-fold) increase in palmitate oxidation capacities in cells from patients with the myopathic form of VLCAD deficiency, but not in cells from severely affected patients. Complete normalization of cell FAO capacities could be achieved after exposure to 500 microm bezafibrate for 48 h. Cell therapy of VLCAD deficiency was related to drug-induced increases in VLCAD mRNA (+44 to +150%; P<0.001), protein (1.5-2-fold) and residual enzyme activity (up to 7.7-fold) in patient cells. Bezafibrate also diminished the production of toxic long-chain acylcarnitines by 90% in cells harboring moderate VLCAD deficiency. Finally, real-time PCR studies indicated that bezafibrate potentially stimulated gene expression of other enzymes in the beta-oxidation pathway. These data highlight the potential of fibrates in the correction of inborn FAO defects, as most mutations associated with these defects are compatible with the synthesis of a mutant protein with variable levels of residual enzyme activity.[1]

References

  1. Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders. Djouadi, F., Aubey, F., Schlemmer, D., Ruiter, J.P., Wanders, R.J., Strauss, A.W., Bastin, J. Hum. Mol. Genet. (2005) [Pubmed]
 
WikiGenes - Universities