The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Befibrat     2-[4-[2-[(4-chlorophenyl) carbonylamino]eth...

Synonyms: Bezabeta, Azufibrat, BezaLande, BezaPuren, Bezacur, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of bezafibrate

 

Psychiatry related information on bezafibrate

 

High impact information on bezafibrate

 

Chemical compound and disease context of bezafibrate

 

Biological context of bezafibrate

 

Anatomical context of bezafibrate

  • Instead, the marked elevation of LDH in peroxisomes of rats treated with the hypolipidemic drug bezafibrate, concomitantly to the induction of the peroxisomal beta-oxidation enzymes, strongly suggests that intraperoxisomal LDH may be involved in the reoxidation of NADH generated by the beta-oxidation pathway [20].
  • In vivo, M-CPT-I mRNA levels increased (4.5-fold induction; P = 0.001) in epididymal white adipose tissue of bezafibrate-treated rats [21].
  • Moreover, bezafibrate reduced the mRNA expression of several adipocyte markers, including PPARgamma (30% reduction; P = 0.05), tumor necrosis factor-alpha (33% reduction; P < 0.05), and the ob gene (26% reduction) [21].
  • Improved insulin sensitivity by bezafibrate in rats: relationship to fatty acid composition of skeletal-muscle triglycerides [16].
  • These results indicate that exposure of adipocytes to bezafibrate, independent of its hepatic effects, increases the degradation of fatty acids, reducing their availability to synthesize triglycerides [21].
 

Associations of bezafibrate with other chemical compounds

 

Gene context of bezafibrate

  • Accordingly, we show that a 48-h treatment of CPT2-deficient myoblasts by bezafibrate restored FAO in patient cells [25].
  • Bezafibrate-induced change in PLTP activity correlated with change in FFAs (r = 0.455, P = 0.058) [26].
  • Fibrates, including bezafibrate (BF), upregulate the expression of ATP binding cassette protein B4 (ABCB4) through gene transcription in mice [27].
  • Bezafibrate suppressed the activities of LCAT and CETP by 21% (P < 0.001) and 17% (P < 0.01), respectively [28].
  • We investigated the effects of 12 weeks of bezafibrate treatment on plasma lipoprotein subfraction levels and on activities of LCAT and CETP in 25 patients with hyperlipoproteinemia [28].
 

Analytical, diagnostic and therapeutic context of bezafibrate

  • Low density lipoprotein (LDL) was isolated by zonal centrifugation from the plasma of seven HTG subjects, before and 2 wk after the initiation of bezafibrate (BZ) therapy [9].
  • In addition, immunoblot analysis revealed the presence of DLP1 in highly purified peroxisomal fractions from rat liver and an increase of DLP1 after treatment of rats with the peroxisome proliferator bezafibrate [29].
  • We attempted to determine whether the coronary vasomotor response to exercise improves after cholesterol-lowering drug therapy with bezafibrate [30].
  • METHODS: A total of 92 dyslipoproteinemic men who had survived a first myocardial infarction before the age of 45 years were randomly assigned to treatment for 5 years with bezafibrate (200 mg three times daily) or placebo; 81 patients underwent baseline and at least one post-treatment coronary angiography [31].
  • To test this issue, transit-time ultrasound flow probes, implanted optical fibers, and laser-Doppler flowmetry were used for measurements of total and regional renal blood flows in lovastatin (40 mg/kg body wt) and bezafibrate (50 mg/kg body wt) chronically treated deoxycorticosterone acetate (DOCA)-salt hypertensive mice [17].

References

  1. Abnormalities in very low, low and high density lipoproteins in hypertriglyceridemia. Reversal toward normal with bezafibrate treatment. Eisenberg, S., Gavish, D., Oschry, Y., Fainaru, M., Deckelbaum, R.J. J. Clin. Invest. (1984) [Pubmed]
  2. Severe reversible renal failure with bezafibrate. Lipkin, G.W., Tomson, C.R. Lancet (1993) [Pubmed]
  3. Ligands for peroxisome proliferator-activated receptors alpha and gamma inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Tanaka, T., Kohno, H., Yoshitani, S., Takashima, S., Okumura, A., Murakami, A., Hosokawa, M. Cancer Res. (2001) [Pubmed]
  4. Bezafibrate as differentiating factor of human myeloid leukemia cells. Scatena, R., Nocca, G., Sole, P.D., Rumi, C., Puggioni, P., Remiddi, F., Bottoni, P., Ficarra, S., Giardina, B. Cell Death Differ. (1999) [Pubmed]
  5. Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc-deficient mice by peroxisome proliferator-activated receptor ligands. Niho, N., Takahashi, M., Kitamura, T., Shoji, Y., Itoh, M., Noda, T., Sugimura, T., Wakabayashi, K. Cancer Res. (2003) [Pubmed]
  6. Decrease in triglyceride level by bezafibrate is related to reduction of recurrent coronary events: a Bezafibrate Infarction Prevention substudy. Haim, M., Benderly, M., Boyko, V., Goldenberg, I., Tanne, D., Battler, A., Goldbourt, U., Behar, S. Coron. Artery Dis. (2006) [Pubmed]
  7. Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. Mann, C.J., Yen, F.T., Grant, A.M., Bihain, B.E. J. Clin. Invest. (1991) [Pubmed]
  8. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings. Sugihara, J., Imamura, T., Nagafuchi, S., Bonaventura, J., Bonaventura, C., Cashon, R. J. Clin. Invest. (1985) [Pubmed]
  9. Defective metabolism of hypertriglyceridemic low density lipoprotein in cultured human skin fibroblasts. Normalization with bezafibrate therapy. Kleinman, Y., Eisenberg, S., Oschry, Y., Gavish, D., Stein, O., Stein, Y. J. Clin. Invest. (1985) [Pubmed]
  10. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Ericsson, C.G., Hamsten, A., Nilsson, J., Grip, L., Svane, B., de Faire, U. Lancet (1996) [Pubmed]
  11. Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes. Kjørholt, C., Akerfeldt, M.C., Biden, T.J., Laybutt, D.R. Diabetes (2005) [Pubmed]
  12. Treatment of primary hypercholesterolemia: fluvastatin versus bezafibrate. Greten, H., Beil, F.U., Schneider, J., Weisweiler, P., Armstrong, V.W., Keller, C., Klör, H.U., von Hodenberg, E., Weidinger, G., Eskötter, H. Am. J. Med. (1994) [Pubmed]
  13. Lowering of plasma glucose concentrations with bezafibrate in patients with moderately controlled NIDDM. Jones, I.R., Swai, A., Taylor, R., Miller, M., Laker, M.F., Alberti, K.G. Diabetes Care (1990) [Pubmed]
  14. Effects of bezafibrate and simvastatin on endothelial activation and lipid peroxidation in hypercholesterolemia: evidence of different vascular protection by different lipid-lowering treatments. Desideri, G., Croce, G., Tucci, M., Passacquale, G., Broccoletti, S., Valeri, L., Santucci, A., Ferri, C. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  15. Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders. Djouadi, F., Aubey, F., Schlemmer, D., Ruiter, J.P., Wanders, R.J., Strauss, A.W., Bastin, J. Hum. Mol. Genet. (2005) [Pubmed]
  16. Improved insulin sensitivity by bezafibrate in rats: relationship to fatty acid composition of skeletal-muscle triglycerides. Matsui, H., Okumura, K., Kawakami, K., Hibino, M., Toki, Y., Ito, T. Diabetes (1997) [Pubmed]
  17. Chronic effects of lovastatin and bezafibrate on cortical and medullary hemodynamics in deoxycorticosterone acetate-salt hypertensive mice. Gross, V., Schneider, W., Schunck, W.H., Mervaala, E., Luft, F.C. J. Am. Soc. Nephrol. (1999) [Pubmed]
  18. Gall bladder dysmotility: a risk factor for gall stone formation in hypertriglyceridaemia and reversal on triglyceride lowering therapy by bezafibrate and fish oil. Jonkers, I.J., Smelt, A.H., Ledeboer, M., Hollum, M.E., Biemond, I., Kuipers, F., Stellaard, F., Boverhof, R., Meinders, A.E., Lamers, C.H., Masclee, A.A. Gut (2003) [Pubmed]
  19. Plasma concentrations of active lovastatin acid are markedly increased by gemfibrozil but not by bezafibrate. Kyrklund, C., Backman, J.T., Kivistö, K.T., Neuvonen, M., Laitila, J., Neuvonen, P.J. Clin. Pharmacol. Ther. (2001) [Pubmed]
  20. L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation. Baumgart, E., Fahimi, H.D., Stich, A., Völkl, A. J. Biol. Chem. (1996) [Pubmed]
  21. Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Cabrero A, n.u.l.l., Alegret, M., Sánchez, R.M., Adzet, T., Laguna, J.C., Vázquez, M. Diabetes (2001) [Pubmed]
  22. Comparison between simvastatin and bezafibrate in effect on plasma lipoproteins and apolipoproteins in primary hypercholesterolaemia. Schulzeck, P., Bojanovski, M., Jochim, A., Canzler, H., Bojanovski, D. Lancet (1988) [Pubmed]
  23. Influence of bezafibrate on hepatic cholesterol metabolism in gallstone patients: reduced activity of cholesterol 7 alpha-hydroxylase. Ståhlberg, D., Reihnér, E., Rudling, M., Berglund, L., Einarsson, K., Angelin, B. Hepatology (1995) [Pubmed]
  24. The interaction of lipophilic drugs with intestinal fatty acid-binding protein. Velkov, T., Chuang, S., Wielens, J., Sakellaris, H., Charman, W.N., Porter, C.J., Scanlon, M.J. J. Biol. Chem. (2005) [Pubmed]
  25. Peroxisome proliferator activated receptor delta (PPARdelta) agonist but not PPARalpha corrects carnitine palmitoyl transferase 2 deficiency in human muscle cells. Djouadi, F., Aubey, F., Schlemmer, D., Bastin, J. J. Clin. Endocrinol. Metab. (2005) [Pubmed]
  26. Decreased PLTP mass but elevated PLTP activity linked to insulin resistance in HTG: effects of bezafibrate therapy. Jonkers, I.J., Smelt, A.H., Hattori, H., Scheek, L.M., van Gent, T., de Man, F.H., van der Laarse, A., van Tol, A. J. Lipid Res. (2003) [Pubmed]
  27. Bezafibrate stimulates canalicular localization of NBD-labeled PC in HepG2 cells by PPARalpha-mediated redistribution of ABCB4. Shoda, J., Inada, Y., Tsuji, A., Kusama, H., Ueda, T., Ikegami, T., Suzuki, H., Sugiyama, Y., Cohen, D.E., Tanaka, N. J. Lipid Res. (2004) [Pubmed]
  28. Effects of bezafibrate therapy on subfractions of plasma low-density lipoprotein and high-density lipoprotein, and on activities of lecithin:cholesterol acyltransferase and cholesteryl ester transfer protein in patients with hyperlipoproteinemia. Homma, Y., Ozawa, H., Kobayashi, T., Yamaguchi, H., Sakane, H., Mikami, Y., Mikami, Y., Nakamura, H. Atherosclerosis (1994) [Pubmed]
  29. Dynamin-like protein 1 is involved in peroxisomal fission. Koch, A., Thiemann, M., Grabenbauer, M., Yoon, Y., McNiven, M.A., Schrader, M. J. Biol. Chem. (2003) [Pubmed]
  30. Exercise-induced vasomotion of angiographically normal and stenotic coronary arteries improves after cholesterol-lowering drug therapy with bezafibrate. Seiler, C., Suter, T.M., Hess, O.M. J. Am. Coll. Cardiol. (1995) [Pubmed]
  31. Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT). Ruotolo, G., Ericsson, C.G., Tettamanti, C., Karpe, F., Grip, L., Svane, B., Nilsson, J., de Faire, U., Hamsten, A. J. Am. Coll. Cardiol. (1998) [Pubmed]
 
WikiGenes - Universities