The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

PubChem10599     2-[4-(4-chlorophenoxy) phenoxy]propanoic acid

Synonyms: HCG-004, AGN-PC-00K8FH, SureCN135587, LF-479, Clofop [ISO], ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Clofop

  • This increase in plasma apo A-II was due to a direct effect on hepatic apo A-II production, since fenofibric acid induced apo A-II mRNA levels to 450 and 250% of control levels in primary cultures of human hepatocytes and in human hepatoblastoma HepG2 cells respectively [1].
  • In HuH7 human hepatoma cells, the PON-1 secreted enzymatic activity and mRNA levels were increased by fenofibric acid (approximately 70%) and decreased by several statins (approximately 50%) [2].
  • A comparative in vitro phototoxicity study has been carried out on the anti-hyperlipoproteinemic drug fenofibrate, its metabolites and the photoproducts of fenofibric acid [3].
  • The photosensitization of DNA damage by KP and fenofibric acid (FB), the main metabolite of fenofibrate, and their parent compound, benzophenone (BZ), was examined on a 32P-end-labeled synthetic oligonucleotide in phosphate-buffered solution using gel sequencing experiments [4].
  • Although the serum concentrations of fenofibric acid were 1.3-fold higher in women than in men, which was probably due to the higher body weight in men (1.2-fold), this difference can hardly explain the favorable effect on lipoproteins in women [5].
 

High impact information on Clofop

  • Treatment of human primary hepatocytes with fenofibric acid (500 microM) provoked an 83 and 50% increase in apo A-I secretion and mRNA levels, respectively, supporting that a direct action of fibrates on liver human apo A-I production leads to the observed increase in plasma apo A4 and HDL-cholesterol [6].
  • PPARalpha activity was assessed by quantification of the key gene target carnitine palmitoyl acyl-CoA transferase 1 (CPT1A) messenger RNA (mRNA).The influence of HCV core protein on PPARalpha mRNA expression was analyzed in vitro by real-time PCR in HCV core-expressing HepG2 cells activated with the PPARalpha ligand fenofibric acid [7].
  • In the hepatocyte cell line AML-12, fenofibric acid, but not BRL 49653, induced LPL mRNA, whereas in 3T3-L1 preadipocytes, the PPARgamma ligand induced LPL mRNA levels much quicker and to a higher extent than fenofibric acid [8].
  • We also show that the intervention of fenofibric acid in cellular lipid metabolism directly affects the expression pattern of HCV core protein [9].
  • Incubation of human hepatocytes or hepatoblastoma HepG2 and Huh7 cells with synthetic PPAR alpha agonists, fenofibric acid, or Wy 14643 resulted in an increase of UGT2B4 mRNA levels [10].
 

Chemical compound and disease context of Clofop

 

Biological context of Clofop

 

Anatomical context of Clofop

 

Associations of Clofop with other chemical compounds

 

Gene context of Clofop

 

Analytical, diagnostic and therapeutic context of Clofop

References

  1. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. Vu-Dac, N., Schoonjans, K., Kosykh, V., Dallongeville, J., Fruchart, J.C., Staels, B., Auwerx, J. J. Clin. Invest. (1995) [Pubmed]
  2. Opposite regulation of the human paraoxonase-1 gene PON-1 by fenofibrate and statins. Gouédard, C., Koum-Besson, N., Barouki, R., Morel, Y. Mol. Pharmacol. (2003) [Pubmed]
  3. Photosensitization by fenofibrate. II. In vitro phototoxicity of the major metabolites. Miranda, M.A., Boscá, F., Vargas, F., Canudas, N. Photochem. Photobiol. (1994) [Pubmed]
  4. Comparison of DNA damage photoinduced by ketoprofen, fenofibric acid and benzophenone via electron and energy transfer. Lhiaubet, V., Paillous, N., Chouini-Lalanne, N. Photochem. Photobiol. (2001) [Pubmed]
  5. Differences in the response of serum lipoproteins to fenofibrate between women and men with primary hypercholesterolaemia. Sudhop, T., Lütjohann, D., Ratman, C., von Bergmann, J., von Bergmann, K. Eur. J. Clin. Pharmacol. (1996) [Pubmed]
  6. Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice. Berthou, L., Duverger, N., Emmanuel, F., Langouët, S., Auwerx, J., Guillouzo, A., Fruchart, J.C., Rubin, E., Denèfle, P., Staels, B., Branellec, D. J. Clin. Invest. (1996) [Pubmed]
  7. Impaired expression of the peroxisome proliferator-activated receptor alpha during hepatitis C virus infection. Dharancy, S., Malapel, M., Perlemuter, G., Roskams, T., Cheng, Y., Dubuquoy, L., Podevin, P., Conti, F., Canva, V., Philippe, D., Gambiez, L., Mathurin, P., Paris, J.C., Schoonjans, K., Calmus, Y., Pol, S., Auwerx, J., Desreumaux, P. Gastroenterology (2005) [Pubmed]
  8. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A.M., Heyman, R.A., Briggs, M., Deeb, S., Staels, B., Auwerx, J. EMBO J. (1996) [Pubmed]
  9. Hepatitis C virus core protein binds to apolipoprotein AII and its secretion is modulated by fibrates. Sabile, A., Perlemuter, G., Bono, F., Kohara, K., Demaugre, F., Kohara, M., Matsuura, Y., Miyamura, T., Bréchot, C., Barba, G. Hepatology (1999) [Pubmed]
  10. Peroxisome proliferator-activated receptor alpha induces hepatic expression of the human bile acid glucuronidating UDP-glucuronosyltransferase 2B4 enzyme. Barbier, O., Duran-Sandoval, D., Pineda-Torra, I., Kosykh, V., Fruchart, J.C., Staels, B. J. Biol. Chem. (2003) [Pubmed]
  11. Relationship between plasma fenofibric acid levels and the effect of micronized fenofibrate on cholesterol, low-density-lipoprotein cholesterol and apolipoprotein B in patients with primary hypercholesterolemia. Raslová, K., Dubovská, D., Mongiellová, V., Trnovec, T. Eur. J. Clin. Pharmacol. (1997) [Pubmed]
  12. Fenofibrate and fenofibric acid analysis by capillary electrophoresis. Shihabi, Z.K. Electrophoresis (2004) [Pubmed]
  13. Lack of a genetic polymorphism in the glucuronidation of fenofibric acid. Vincent-Viry, M., Cossy, C., Galteau, M.M., Gueguen, R., Magdalou, J., Nicolas, A., Leroy, P., Siest, G. Pharmacogenetics (1995) [Pubmed]
  14. Regulation of rat liver apolipoprotein A-I, apolipoprotein A-II and acyl-coenzyme A oxidase gene expression by fibrates and dietary fatty acids. Berthou, L., Saladin, R., Yaqoob, P., Branellec, D., Calder, P., Fruchart, J.C., Denèfle, P., Auwerx, J., Staels, B. Eur. J. Biochem. (1995) [Pubmed]
  15. Simvastatin does not have a clinically significant pharmacokinetic interaction with fenofibrate in humans. Bergman, A.J., Murphy, G., Burke, J., Zhao, J.J., Valesky, R., Liu, L., Lasseter, K.C., He, W., Prueksaritanont, T., Qiu, Y., Hartford, A., Vega, J.M., Paolini, J.F. Journal of clinical pharmacology. (2004) [Pubmed]
  16. Fenofibric acid modulates the human apolipoprotein A-IV gene expression in HepG2 cells. Bovard-Houppermans, S., Ochoa, A., Fruchart, J.C., Zakin, M.M. Biochem. Biophys. Res. Commun. (1994) [Pubmed]
  17. Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates. Staels, B., Vu-Dac, N., Kosykh, V.A., Saladin, R., Fruchart, J.C., Dallongeville, J., Auwerx, J. J. Clin. Invest. (1995) [Pubmed]
  18. Growth inhibition of human vascular smooth muscle cells by fenofibrate: a possible therapy for restenosis. Munro, E., Patel, M., Chan, P., Betteridge, L., Gallagher, K., Schachter, M., Wolfe, J., Sever, P. Cardiovasc. Res. (1994) [Pubmed]
  19. The metabolism and disposition of 14C-fenofibrate in human volunteers. Weil, A., Caldwell, J., Strolin-Benedetti, M. Drug Metab. Dispos. (1990) [Pubmed]
  20. Release of inflammatory mediators (PGE2, IL-6) by fenofibric acid-photosensitized human keratinocytes and fibroblasts. Terencio, M.C., Guillén, I., Gómez-Lechón, M.J., Miranda, M.A., Castell, J.V. Photochem. Photobiol. (1998) [Pubmed]
  21. Dilazep and fenofibric acid inhibit MCP-1 mRNA expression in glycoxidized LDL-stimulated human endothelial cells. Sonoki, K., Iwase, M., Iino, K., Ichikawa, K., Yoshinari, M., Ohdo, S., Higuchi, S., Iida, M. Eur. J. Pharmacol. (2003) [Pubmed]
  22. A chemical switch regulates fibrate specificity for peroxisome proliferator-activated receptor alpha (PPARalpha ) versus liver X receptor. Thomas, J., Bramlett, K.S., Montrose, C., Foxworthy, P., Eacho, P.I., McCann, D., Cao, G., Kiefer, A., McCowan, J., Yu, K.L., Grese, T., Chin, W.W., Burris, T.P., Michael, L.F. J. Biol. Chem. (2003) [Pubmed]
  23. Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) alpha. PPAR alpha fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expresson. Lawrence, J.W., Li, Y., Chen, S., DeLuca, J.G., Berger, J.P., Umbenhauer, D.R., Moller, D.E., Zhou, G. J. Biol. Chem. (2001) [Pubmed]
  24. Comparative effects of fibrates on drug metabolizing enzymes in human hepatocytes. Prueksaritanont, T., Richards, K.M., Qiu, Y., Strong-Basalyga, K., Miller, A., Li, C., Eisenhandler, R., Carlini, E.J. Pharm. Res. (2005) [Pubmed]
  25. Evaluation of the potential for pharmacokinetic interaction between fenofibrate and ezetimibe: A phase I, open-label, multiple-dose, three-period crossover study in healthy subjects. Gustavson, L.E., Schweitzer, S.M., Burt, D.A., Achari, R., Rieser, M.J., Edeki, T., Chira, T., Yannicelli, H.D., Kelly, M.T. Clinical therapeutics. (2006) [Pubmed]
  26. Induction of plasminogen activator inhibitor-1 in endothelial cells by basic fibroblast growth factor and its modulation by fibric acid. Kaneko, T., Fujii, S., Matsumoto, A., Goto, D., Ishimori, N., Watano, K., Furumoto, T., Sugawara, T., Sobel, B.E., Kitabatake, A. Arterioscler. Thromb. Vasc. Biol. (2002) [Pubmed]
  27. Fenofibrate: metabolism and species differences for peroxisome proliferation in cultured hepatocytes. Cornu-Chagnon, M.C., Dupont, H., Edgar, A. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1995) [Pubmed]
  28. Fenofibric acid, an active form of fenofibrate, increases apolipoprotein A-I-mediated high-density lipoprotein biogenesis by enhancing transcription of ATP-binding cassette transporter A1 gene in a liver X receptor-dependent manner. Arakawa, R., Tamehiro, N., Nishimaki-Mogami, T., Ueda, K., Yokoyama, S. Arterioscler. Thromb. Vasc. Biol. (2005) [Pubmed]
  29. The Effects of Food on the Bioavailability of Fenofibrate Administered Orally in Healthy Volunteers via Sustained-Release Capsule. Yun, H.Y., Joo Lee, E., Youn Chung, S., Choi, S.O., Kee Kim, H., Kwon, J.T., Kang, W., Kwon, K.I. Clinical pharmacokinetics. (2006) [Pubmed]
  30. Comparative steady state study with 2 fenofibrate 250 mg slow release capsules. An example of bioequivalence assessment with a highly variable drug. Doser, K., Guserle, R., Nitsche, V., Arnold, G. International journal of clinical pharmacology and therapeutics. (1996) [Pubmed]
  31. Effect of hemodialysis on plasma kinetics of fenofibrate in chronic renal failure. Desager, J.P., Costermans, J., Verberckmoes, R., Harvengt, C. Nephron (1982) [Pubmed]
 
WikiGenes - Universities