The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Inhibition of pathologic retinal neovascularization by alpha-defensins.

Proliferative retinopathies, such as those complicating prematurity and diabetes, are major causes of blindness. A prominent feature of these retinopathies is excessive neovascularization, which is orchestrated by the hypoxia-induced vascular endothelial growth factor ( VEGF) stimulating endothelial cells and the integrin- mediated adhesive interactions of endothelial cells with extracellular matrix components such as fibronectin (FN). Recently, we demonstrated that alpha-defensins interfere with alpha5beta1-FN interactions and dependent endothelial cell functions. Here, alpha-defensins were studied in hypoxia-induced proliferative retinopathy. In vitro, alpha-defensins specifically inhibited alpha5beta1-integrin-dependent migration of bovine retinal endothelial cells (BRECs) to FN, attenuated the VEGF-stimulated increase in endothelial permeability, and blocked BREC proliferation and capillary sprout formation in 3-dimensional fibrin-matrices. An up-regulation of beta1-integrin and FN was observed in the retinal vessels in the mouse model of hypoxia-induced retinal angiogenesis. Systemic and local administration of alpha-defensins reduced retinal neovascularization by 45% and 60%, respectively, and this effect was comparable to the inhibitory effect of alpha5beta1-blocking antibody. alpha-Defensins were detected in human diabetic retinas associated with normal retinal vessels but were absent from proliferative lesions. Together, these data show that alpha-defensins inhibit pathologic retinal neovascularization in vivo and may provide a clinically efficient strategy against proliferative retinopathies.[1]

References

  1. Inhibition of pathologic retinal neovascularization by alpha-defensins. Economopoulou, M., Bdeir, K., Cines, D.B., Fogt, F., Bdeir, Y., Lubkowski, J., Lu, W., Preissner, K.T., Hammes, H.P., Chavakis, T. Blood (2005) [Pubmed]
 
WikiGenes - Universities