Expression of cystatin C prevents oxidative stress-induced death in PC12 cells.
Cystatin C, an inhibitor of cysteine proteinases, is suggested to be involved in oxidative stress-induced apoptosis of cultured CNS neurons and various neuronal diseases in vivo; however, little is known about its mechanism of action. To address the role cystatin C plays in oxidative stress-induced neuronal cell death, we established PC12 cell lines that stably expressed rat cystatin C. These cystatin C-expressing PC12 cells showed remarkable resistance to high (50%) oxygen atmosphere. This resistance correlate with expression levels of cystatin C, demonstrating that cystatin C has a protective effect on high oxygen-induced cell death. In contrast, in a normal (20%) oxygen atmosphere neither control nor cystatin C-expressing PC12 cells showed a significant change in the number of living cells, indicating that cystatin C does not play an important role in the regulation of cellular proliferation. Furthermore, the cystatin C-expressing cell line also resisted other oxidative stresses, including glutamate- and 13-L-hydroperoxylinoleic acid (LOOH)-induced cell death. These results demonstrate that cystatin C has protective effects against various oxidative stresses that induce cell death.[1]References
- Expression of cystatin C prevents oxidative stress-induced death in PC12 cells. Nishiyama, K., Konishi, A., Nishio, C., Araki-Yoshida, K., Hatanaka, H., Kojima, M., Ohmiya, Y., Yamada, M., Koshimizu, H. Brain Res. Bull. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg