The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cyclin G-associated kinase: a novel androgen receptor-interacting transcriptional coactivator that is overexpressed in hormone refractory prostate cancer.

The androgen receptor (AR), a steroid receptor family member, is a ligand-dependent transcription factor that has an integral role in normal prostate development. Alterations in AR-mediated activity can result in abnormal gene expression, dysregulated cell growth and prostate cancer. Coregulator proteins that interact with AR to influence activity and specificity of the AR-response may also have an important role in prostate cancer progression. Since the NH(2)-terminal domain (NTD) of AR encodes the ligand-independent activation function (AF)-1, this domain is incompatible with conventional yeast two-hybrid systems. Therefore, we have used the Tup1 repressed transactivator (RTA) system, which exploits the intrinsic transactivation properties of AR.NTD, for identification of novel AR-interacting proteins. Using this system, cyclin G-associated kinase (GAK) was identified as an AR interacting protein, and GST pull-down assays were used to confirm the interaction. GAK was shown to enhance the AF-1 function of AR activity in a ligand-dependent manner. Additionally, GAK enhanced the AR transcriptional response even at low concentrations of androgens, which is relevant to AR activity in androgen-independent prostate cancer. Finally, neo-adjuvant hormone therapy (NHT) tissue microarray analysis demonstrated that GAK expression increased significantly with prostate cancer progression to androgen independence, which suggests a prognostic role for GAK in advanced disease.[1]

References

  1. Cyclin G-associated kinase: a novel androgen receptor-interacting transcriptional coactivator that is overexpressed in hormone refractory prostate cancer. Ray, M.R., Wafa, L.A., Cheng, H., Snoek, R., Fazli, L., Gleave, M., Rennie, P.S. Int. J. Cancer (2006) [Pubmed]
 
WikiGenes - Universities