The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression.

The breast tumor kinase (BRK) is a growth promoting non-receptor tyrosine kinase overexpressed in the majority of human breast tumors. BRK is known to potentiate the epidermal growth factor (EGF) response in these cells. Although BRK is known to phosphorylate the RNA- binding protein Sam68, the specific tyrosines phosphorylated and the exact role of this phosphorylation remains unknown. Herein, we have generated Sam68 phospho-specific antibodies against C-terminal phosphorylated tyrosine residues within the Sam68 nuclear localization signal. We show that BRK phosphorylates Sam68 on all three tyrosines in the nuclear localization signal. By indirect immunofluorescence we observed that BRK and EGF treatment not only phosphorylates Sam68 but also induces its relocalization. Tyrosine 440 was identified as a principal modulator of Sam68 localization and this site was phosphorylated in response to EGF treatment in human breast tumor cell lines. Moreover, this phosphorylation event was inhibited by BRK small interfering RNA treatment, consistent with Sam68 being a physiological substrate of BRK downstream of the EGF receptor in breast cancer cells. Finally, we observed that Sam68 suppressed BRK-induced cell proliferation, suggesting that Sam68 does indeed contain anti-proliferative properties that may be neutralized in breast cancer cells by phosphorylation.[1]

References

 
WikiGenes - Universities