The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

KHDRBS1  -  KH domain containing, RNA binding, signal...

Homo sapiens

Synonyms: FLJ34027, GAP-associated tyrosine phosphoprotein p62, KH domain-containing, RNA-binding, signal transduction-associated protein 1, SAM68, Sam68, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of KHDRBS1


High impact information on KHDRBS1

  • We demonstrated that tyrosine phosphorylation of p68 at Y593 mediated PDGF-stimulated epithelial-mesenchymal transition (EMT) [6].
  • In the present study, we characterized the tyrosine phosphorylation of p68 under platelet-derived growth factor (PDGF) stimulation [6].
  • We showed that PDGF treatment led to phosphorylation of p68 at Y593 in the cell nucleus [6].
  • p62 is a tyrosine phosphoprotein that associates with p21ras GTPase-activating protein (GAP) [7].
  • The double-stranded (ds) RNA-dependent protein kinase is a 100,000-110,000 Mr complex of two interferon-induced subunits each having ATP binding sites: a 48,000 Mr protein (p48) which appears to be responsible for the phosphorylation of a 68,000 Mr protein (p68) in the presence of dsRNA [8].

Chemical compound and disease context of KHDRBS1


Biological context of KHDRBS1


Anatomical context of KHDRBS1


Associations of KHDRBS1 with chemical compounds

  • Synthetic peptides corresponding to the proline motifs of Sam68 inhibited with different efficiencies the binding of SH3 domains to Sam68 suggesting that the proline motifs of Sam68 function as specific SH3 domain binding sites [15].
  • Guanosine triphosphatase-activating protein-associated protein, but not src-associated protein p68 in mitosis, is a part of insulin signaling complexes [16].
  • In vivo studies of protein-protein interaction were assessed by co-immunoprecipitation experiments with specific antibodies against Sam68, GAP, Grb2, SOS, and phosphotyrosine; and by affinity precipitation with the fusion proteins (SH3-Grb2) [17].
  • The presence of p72/p68 potentiated the estrogen-induced expression of the endogenous pS2 gene in MCF7 cells [18].
  • We demonstrate that p68 enhanced the activity of AF-1 but not AF-2 and the estrogen-induced as well as the anti-estrogen-induced transcriptional activity of the full-length ERalpha in a cell-type-specific manner [19].

Physical interactions of KHDRBS1


Enzymatic interactions of KHDRBS1


Regulatory relationships of KHDRBS1


Other interactions of KHDRBS1


Analytical, diagnostic and therapeutic context of KHDRBS1


  1. Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. Lukong, K.E., Larocque, D., Tyner, A.L., Richard, S. J. Biol. Chem. (2005) [Pubmed]
  2. Sam68, RNA helicase A and Tap cooperate in the post-transcriptional regulation of human immunodeficiency virus and type D retroviral mRNA. Reddy, T.R., Tang, H., Xu, W., Wong-Staal, F. Oncogene (2000) [Pubmed]
  3. Salpalpha and Salpbeta, growth-arresting homologs of Sam68. Lee, J., Burr, J.G. Gene (1999) [Pubmed]
  4. Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Reddy, T.R., Xu, W., Mau, J.K., Goodwin, C.D., Suhasini, M., Tang, H., Frimpong, K., Rose, D.W., Wong-Staal, F. Nat. Med. (1999) [Pubmed]
  5. General effect of Sam68 on Rev/Rex regulated expression of complex retroviruses. Reddy, T.R., Xu, W.D., Wong-Staal, F. Oncogene (2000) [Pubmed]
  6. P68 RNA Helicase Mediates PDGF-Induced Epithelial Mesenchymal Transition by Displacing Axin from beta-Catenin. Yang, L., Lin, C., Liu, Z.R. Cell (2006) [Pubmed]
  7. Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. Wong, G., Müller, O., Clark, R., Conroy, L., Moran, M.F., Polakis, P., McCormick, F. Cell (1992) [Pubmed]
  8. Two interferon-induced proteins are involved in the protein kinase complex dependent on double-stranded RNA. Galabru, J., Hovanessian, A.G. Cell (1985) [Pubmed]
  9. The interferon-induced double-stranded RNA-activated human p68 protein kinase potently inhibits protein synthesis in cultured cells. Lee, S.B., Melkova, Z., Yan, W., Williams, B.R., Hovanessian, A.G., Esteban, M. Virology (1993) [Pubmed]
  10. Use of the OM-11-906 monoclonal antibody for determining p62 c-myc expression by flow cytometry in relation to prognosis in colorectal cancer. Rowley, S., Carpenter, R., Newbold, K.M., Gearty, J., Keighley, M.R., Donovan, I.A., Neoptolemos, J.P. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. (1991) [Pubmed]
  11. Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling. Fusaki, N., Iwamatsu, A., Iwashima, M., Fujisawa, J. J. Biol. Chem. (1997) [Pubmed]
  12. Functional interaction of Sam68 and heterogeneous nuclear ribonucleoprotein K. Yang, J.P., Reddy, T.R., Truong, K.T., Suhasini, M., Wong-Staal, F. Oncogene (2002) [Pubmed]
  13. Sam68 association with p120GAP in CD4+ T cells is dependent on CD4 molecule expression. Jabado, N., Jauliac, S., Pallier, A., Bernard, F., Fischer, A., Hivroz, C. J. Immunol. (1998) [Pubmed]
  14. Sam68 from an immortalised B-cell line associates with a subset of SH3 domains. Finan, P.M., Hall, A., Kellie, S. FEBS Lett. (1996) [Pubmed]
  15. Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src. Shen, Z., Batzer, A., Koehler, J.A., Polakis, P., Schlessinger, J., Lydon, N.B., Moran, M.F. Oncogene (1999) [Pubmed]
  16. Guanosine triphosphatase-activating protein-associated protein, but not src-associated protein p68 in mitosis, is a part of insulin signaling complexes. Sung, C.K., Choi, W.S., Sanchez-Margalet, V. Endocrinology (1998) [Pubmed]
  17. Sam68 associates with the SH3 domains of Grb2 recruiting GAP to the Grb2-SOS complex in insulin receptor signaling. Najib, S., Sánchez-Margalet, V. J. Cell. Biochem. (2002) [Pubmed]
  18. A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. Watanabe, M., Yanagisawa, J., Kitagawa, H., Takeyama , K., Ogawa, S., Arao, Y., Suzawa, M., Kobayashi, Y., Yano, T., Yoshikawa, H., Masuhiro, Y., Kato, S. EMBO J. (2001) [Pubmed]
  19. Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Endoh, H., Maruyama, K., Masuhiro, Y., Kobayashi, Y., Goto, M., Tai, H., Yanagisawa, J., Metzger, D., Hashimoto, S., Kato, S. Mol. Cell. Biol. (1999) [Pubmed]
  20. Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Di Lello, P., Jenkins, L.M., Jones, T.N., Nguyen, B.D., Hara, T., Yamaguchi, H., Dikeakos, J.D., Appella, E., Legault, P., Omichinski, J.G. Mol. Cell (2006) [Pubmed]
  21. Identification of cellular mRNA targets for RNA-binding protein Sam68. Itoh, M., Haga, I., Li, Q.H., Fujisawa, J. Nucleic Acids Res. (2002) [Pubmed]
  22. A dual participation of ZAP-70 and scr protein tyrosine kinases is required for TCR-induced tyrosine phosphorylation of Sam68 in Jurkat T cells. Lang, V., Mège, D., Semichon, M., Gary-Gouy, H., Bismuth, G. Eur. J. Immunol. (1997) [Pubmed]
  23. Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK. Coyle, J.H., Guzik, B.W., Bor, Y.C., Jin, L., Eisner-Smerage, L., Taylor, S.J., Rekosh, D., Hammarskjöld, M.L. Mol. Cell. Biol. (2003) [Pubmed]
  24. SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Babic, I., Cherry, E., Fujita, D.J. Oncogene (2006) [Pubmed]
  25. Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules. Nunès, J.A., Truneh, A., Olive, D., Cantrell, D.A. J. Biol. Chem. (1996) [Pubmed]
  26. The SH3 domain of Bruton's tyrosine kinase interacts with Vav, Sam68 and EWS. Guinamard, R., Fougereau, M., Seckinger, P. Scand. J. Immunol. (1997) [Pubmed]
  27. Evidence for a role for SAM68 in the responses of human neutrophils to ligation of CD32 and to monosodium urate crystals. Gilbert, C., Barabé, F., Rollet-Labelle, E., Bourgoin, S.G., McColl, S.R., Damaj, B.B., Naccache, P.H. J. Immunol. (2001) [Pubmed]
  28. Identification of residues in GTPase-activating protein Src homology 2 domains that control binding to tyrosine phosphorylated growth factor receptors and p62. Marengere, L.E., Pawson, T. J. Biol. Chem. (1992) [Pubmed]
WikiGenes - Universities