The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation.

Animal SWI2/SNF2 protein complexes containing either the brahma (BRM) or brahma-related gene 1 (BRG1) ATPase are involved in nucleosome remodelling and may control the accessibility of sequence-specific transcription factors to DNA. In vitro studies have indicated that BRM and BRG1 could regulate the expression of distinct sets of genes. However, as mice lacking BRM are viable and fertile, BRG1 might efficiently compensate for BRM loss. By contrast, as Brg1-null fibroblasts are viable but Brg1-null embryos die during the peri-implantation stage, BRG1 might exert cell-specific functions. To further investigate the in vivo role of BRG1, we selectively ablated Brg1 in keratinocytes of the forming mouse epidermis. We show that BRG1 is selectively required for epithelial-mesenchymal interactions in limb patterning, and during keratinocyte terminal differentiation, in which BRM can partially substitute for BRG1. By contrast, neither BRM nor BRG1 are essential for the proliferation and early differentiation of keratinocytes, which may require other ATP-dependent nucleosome-remodelling complexes. Finally, we demonstrate that cell-specific targeted somatic mutations can be created at various times during the development of mouse embryos cell-specifically expressing the tamoxifen-activatable Cre-ER(T2) recombinase.[1]

References

 
WikiGenes - Universities