The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dose response, coasting, and differential fiber vulnerability in human toxic neuropathy: a prospective study of pyridoxine neurotoxicity.

We administered either 1 or 3 g/d of pyridoxine (vitamin B6) to five healthy volunteers and repeatedly followed serum pyridoxal phosphate levels, clinical symptoms and signs, quantitative sensory thresholds (QSTs), and sural nerve electrophysiology. Pyridoxine was discontinued at the first sign of either clinical or laboratory abnormality. In all subjects, sensory symptoms and QST abnormalities occurred concurrently. Subjects receiving higher doses became symptomatic earlier than low-dose subjects. Elevation of thermal QSTs preceded or exceeded that for vibration in the three low-dose subjects; vibration and thermal QST became abnormal simultaneously in the higher-dose subjects. A reduction in the amplitude of the sural sensory potential lagged behind QST changes in two of three subjects. Symptoms continued to progress ("coasting") for 2 to 3 weeks despite stopping pyridoxine administration and the return of serum pyridoxal phosphate levels to normal. This study suggests that (1) there is a clear dose-percent relationship for pyridoxine-induced neuropathy, (2) QST is a sensitive measurement for detecting early peripheral neuropathy; QST abnormalities may precede changes in nerve conduction studies, (3) coasting appears unrelated to persistently elevated blood levels of the toxin, and (4) a dose-dependent vulnerability may exist among nerve fibers of different caliber when exposed to an axonal toxin, such as pyridoxine.[1]

References

 
WikiGenes - Universities