The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Functional in vitro characterization of CR 3394: a novel voltage dependent N-methyl-D-aspartate (NMDA) receptor antagonist.

Using the patch-clamp technique, we studied the effect of two novel adamantane derivatives, N-[2-(3,5-dimethyl-1-adamantyl)ethyl] guanidine (CR 3391) and N-[2-(3,5-dimethyl-1-adamantyl) ethyl]acetamidine (CR 3394), on NMDA receptors expressed in cortical neuron cultures. Our data show that CR 3391 and CR 3394 reduce NMDA-evoked currents (IC50 = 1.7 +/- 0.6 microM and 6.7 +/- 1.5 microM, respectively). This antagonism is non-competitive and is completely reversible. The effect of CR 3394, like that of memantine, was strongly voltage dependent. HEK293 cells expressing NR1a/NR2B recombinant NMDA receptors and immature neurons (DIV 8-9) were more sensitive to CR 3394 antagonism than NR1a/NR2A expressing cells and DIV 15 neurons. CR 3394 also reduced the duration and amplitude of miniature excitatory post-synaptic currents mediated exclusively by NMDA receptors (NMDA-mEPSCs). Both memantine and CR 3394 inhibited NMDA-evoked [3H]norepinephrine release from rat hippocampal slices in a concentration-dependent manner with similar potency. CR 3394, but not memantine, increased cathecholamine resting release at low micromolar concentrations. Moreover, in an in vitro model of neurotoxicity, CR 3394 strongly reduced glutamate- and NMDA-induced neuronal death. Taken together, our data highlight pharmacological features of CR 3394 in vitro that prompt us to further evaluate it as a candidate for the treatment of neurodegenerative disorders.[1]


  1. Functional in vitro characterization of CR 3394: a novel voltage dependent N-methyl-D-aspartate (NMDA) receptor antagonist. Losi, G., Lanza, M., Makovec, F., Artusi, R., Caselli, G., Puia, G. Neuropharmacology (2006) [Pubmed]
WikiGenes - Universities