The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inducers and inhibitors of biomineralization: lessons from pathological calcification.

OBJECTIVES: Ectopic calcification is a common response to soft tissue injury and systemic mineral imbalance and can lead to devastating clinical consequences when present in joints, heart valves and blood vessels. We have hypothesized that mineralization of matrices in any tissue is normally controlled by a balance between procalcific and anticalcific regulatory proteins such that abnormal deposition of apatite is avoided. Alterations in this balance induced by injury, disease or genetic deficiency are postulated to induce ectopic mineral deposition. Over the past several years, we have developed in vitro and in vivo models of ectopic calcification to investigate potential inducers and inhibitors of this process. RESULTS: Osteopontin, a secreted phosphoprotein, has emerged as a major inhibitor of ectopic mineralization. Osteopontin is a potent inhibitor of vascular cell calcification in vitro and mice lacking osteopontin are highly susceptible to ectopic calcification. Furthermore, osteopontin treatment of biomaterials protected against ectopic mineralization. Our studies indicate that in addition to inhibiting apatite crystal initiation and growth, osteopontin stimulates resorption of ectopic calcification via peripheral macrophages and giant cells. In contrast, inorganic phosphate has emerged as a major inducer of mineralization in these systems. Elevated inorganic phosphate (Pi) was shown to induce smooth muscle cell matrix calcification with morphological properties similar to those observed in calcified human valves and atherosclerotic plaques. Furthermore, mineralization induced by inorganic phosphate was dependent on the activity of the sodium-dependent phosphate cotransporter, Pit-1. CONCLUSIONS: These studies implicate controlled, transcellular transport of Pi as a major requirement for matrix calcification.[1]


  1. Inducers and inhibitors of biomineralization: lessons from pathological calcification. Giachelli, C.M. Orthodontics & craniofacial research. (2005) [Pubmed]
WikiGenes - Universities