The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

5-HT1B receptors modulate the feeding inhibitory effects of enterostatin.

Serotonin (5-HT) is considered to play an important role in control of appetite. Enterostatin has been shown to alter 5-HT release in the brain, and non-specific 5-HT antagonists blocked the anorectic response to icv enterostatin. The aim of this study was to further identify which 5-HT receptor subtype mediates the enterostatin feeding behavior and whether this effect occurs due to action in the PVN. Wild-type and 5-HT2C receptor-/- (KO) mice and normal Sprague-Dawley rats were used in these experiments. All animals were fed a high fat diet. Enterostatin (120 nmol, i.p.) reduced the intake of high fat diet in 5-HT2C receptor mutant mice (saline 4.54 +/- 0.47 kcal vs. Ent 2.53 +/- 0.76 kcal) 1 h after injection. A selective 5-HT1B antagonist (GR55526, 40 mg/kg body weight, i.p.) blocked the enterostatin hypophagic effects in these KO mice. Rats were implanted with cannulas into the amygdala and the ipsilateral PVN. The 5-HT receptor antagonists metergoline (non-specific receptor subtypes 1 and 2), or ritanserin (selective 2C), or GR55562 (selective l B) was injected into the PVN prior to enterostatin (0.01 nmol) injection into the amygdala. Enterostatin reduced food intake (saline: 5.80 +/- 0.59 g vs. enterostatin 3.47 +/- 0.56 g, P < 0.05 at l h). Pretreatment with either metergoline (10 nmol) or GR55526 (10 nmol) but not ritanserin (10 nmol) into the PVN attenuated the anorectic response to amygdala enterostatin. The data imply that the enterostatin anorectic response may be modulated by 5-HT1B receptors and that a neuronal pathway from the amygdala to the PVN regulates the enterostatin response through activation of 5-HTlB receptors in PVN.[1]

References

 
WikiGenes - Universities