The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Feeding Behavior

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Feeding Behavior


Psychiatry related information on Feeding Behavior


High impact information on Feeding Behavior

  • A new framework for understanding the control of feeding behavior, with special emphasis on the evolution of hunger, the initiation of feeding, and its dependence on patterns of blood glucose, is the subject of this review [10].
  • Urocortin-deficient mice have normal basal feeding behavior and stress responses, but show heightened anxiety-like behaviors in the elevated plus maze and open-field tests [11].
  • Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3 [12].
  • When administered centrally to rats, these peptides stimulate food consumption. prepro-orexin mRNA level is up-regulated upon fasting, suggesting a physiological role for the peptides as mediators in the central feedback mechanism that regulates feeding behavior [13].
  • Thus, isoforms of a putative neuropeptide receptor generate natural variation in C. elegans feeding behavior [14].

Chemical compound and disease context of Feeding Behavior

  • Experiments with four types of invertebrates showed that feeding behavior and dietary uptake control bioaccumulation of cadmium, silver, nickel, and zinc [15].
  • These results are in agreement with recent reports of the anatomical and biochemical effects of intracerebral kainic acid injections and suggest that the observed effect on feeding behavior is related to the destruction of neurons in the lateral hypothalamus [16].
  • Insulin and corticosterone, which are known to affect hypothalamic NPY and CRH expression, were not different between these two groups, making it unlikely that they can account for the differences in either feeding behavior or hypothalamic peptide expression [17].
  • To further explore the role of CCK in humans, the effect on satiety and eating behavior of a specific CCK-receptor antagonist, loxiglumide, that preferentially inhibits peripheral (CCK-A) receptors was investigated [18].
  • This receptor subfamily, which is believed to be the target of the anti-migraine drug sumatriptan and may regulate feeding behavior, anxiety, depression, cardiac function and movement, can now be approached on a molecular level [19].

Biological context of Feeding Behavior

  • These results indicate that NMU plays an important role in the regulation of feeding behavior and energy metabolism independent of the leptin signaling pathway [20].
  • Leptin, injected intraperitoneally (i.p.) at low doses (4-120 microg/kg), which did not influence feeding behavior for the first 3 hr postinjection, decreased food intake dose dependently by 47-83% during the first hour when coinjected with a subthreshold dose of CCK [21].
  • Upon reduction of the litter size, some mutants survive into adulthood and display growth retardation with no apparent brain or behavioral abnormalities, suggesting that Hap1 function is essential only for early postnatal feeding behavior [22].
  • It is proposed that these rhythms, involving a predark rise in CORT and NPY gene expression leading to a peak in CORT and peptide levels at dark onset, are active in stimulating feeding behavior, particularly carbohydrate ingestion, which predominates at that time [23].
  • These results suggest that calcium/calmodulin-dependent protein kinase II induced phosphorylation of CREB may be involved in regulating feeding behavior induced by NPY [24].

Anatomical context of Feeding Behavior


Gene context of Feeding Behavior

  • These are the first two variants associated with the pathophysiology of ED in different populations and support a role for BDNF in the susceptibility to aberrant eating behaviors [30].
  • Recently, it has been shown that targeted disruption of Hap1 in mice results in early postnatal death as a result of depressed feeding behavior [22].
  • Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior [31].
  • To determine the physiological importance of GLP-1 receptor (GLP-1R)-leptin interactions, we studied islet function and feeding behavior in ob/ob:GLP-1R(-/-) mice [32].
  • Agouti-related protein (AGRP) is an endogenous antagonist of melanocortin action that functions in the hypothalamic control of feeding behavior [33].

Analytical, diagnostic and therapeutic context of Feeding Behavior


  1. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Scrocchi, L.A., Brown, T.J., MaClusky, N., Brubaker, P.L., Auerbach, A.B., Joyner, A.L., Drucker, D.J. Nat. Med. (1996) [Pubmed]
  2. Deletion of a nuclease-sensitive region between the Igf2 and H19 genes leads to Igf2 misregulation and increased adiposity. Jones, B.K., Levorse, J., Tilghman, S.M. Hum. Mol. Genet. (2001) [Pubmed]
  3. IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation. Pereira, C.M., Sattlegger, E., Jiang, H.Y., Longo, B.M., Jaqueta, C.B., Hinnebusch, A.G., Wek, R.C., Mello, L.E., Castilho, B.A. J. Biol. Chem. (2005) [Pubmed]
  4. A tropomyosin-2 mutation suppresses a troponin I myopathy in Drosophila. Naimi, B., Harrison, A., Cummins, M., Nongthomba, U., Clark, S., Canal, I., Ferrus, A., Sparrow, J.C. Mol. Biol. Cell (2001) [Pubmed]
  5. BDNF regulates eating behavior and locomotor activity in mice. Kernie, S.G., Liebl, D.J., Parada, L.F. EMBO J. (2000) [Pubmed]
  6. Outcome and clinical course in inpatient bulimic women: a 2- to 9-year follow-up study. Fallon, B.A., Walsh, B.T., Sadik, C., Saoud, J.B., Lukasik, V. The Journal of clinical psychiatry. (1991) [Pubmed]
  7. Cholinergic mechanisms in canine narcolepsy--II. Acetylcholine release in the pontine reticular formation is enhanced during cataplexy. Reid, M.S., Siegel, J.M., Dement, W.C., Mignot, E. Neuroscience (1994) [Pubmed]
  8. Menstrual function and eating behavior in female recreational weight lifters and competitive body builders. Walberg, J.L., Johnston, C.S. Medicine and science in sports and exercise. (1991) [Pubmed]
  9. Similar feeding patterns are induced by perifornical neuropeptide Y injection and by food deprivation. Marín Bivens, C.L., Thomas, W.J., Stanley, B.G. Brain Res. (1998) [Pubmed]
  10. Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Campfield, L.A., Smith, F.J. Physiol. Rev. (2003) [Pubmed]
  11. Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Vetter, D.E., Li, C., Zhao, L., Contarino, A., Liberman, M.C., Smith, G.W., Marchuk, Y., Koob, G.F., Heinemann, S.F., Vale, W., Lee, K.F. Nat. Genet. (2002) [Pubmed]
  12. Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Reizes, O., Lincecum, J., Wang, Z., Goldberger, O., Huang, L., Kaksonen, M., Ahima, R., Hinkes, M.T., Barsh, G.S., Rauvala, H., Bernfield, M. Cell (2001) [Pubmed]
  13. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M., Tanaka, H., Williams, S.C., Richardson, J.A., Kozlowski, G.P., Wilson, S., Arch, J.R., Buckingham, R.E., Haynes, A.C., Carr, S.A., Annan, R.S., McNulty, D.E., Liu, W.S., Terrett, J.A., Elshourbagy, N.A., Bergsma, D.J., Yanagisawa, M. Cell (1998) [Pubmed]
  14. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. de Bono, M., Bargmann, C.I. Cell (1998) [Pubmed]
  15. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Lee, B.G., Griscom, S.B., Lee, J.S., Choi, H.J., Koh, C.H., Luoma, S.N., Fisher, N.S. Science (2000) [Pubmed]
  16. Aphagia and adipsia after preferential destruction of nerve cell bodies in hypothalamus. Grossman, S.P., Dacey, D., Halaris, A.E., Collier, T., Routtenberg, A. Science (1978) [Pubmed]
  17. Effect of a high-fat diet on food intake and hypothalamic neuropeptide gene expression in streptozotocin diabetes. Chavez, M., Seeley, R.J., Havel, P.J., Friedman, M.I., Matson, C.A., Woods, S.C., Schwartz, M.W. J. Clin. Invest. (1998) [Pubmed]
  18. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Drewe, J., Gadient, A., Rovati, L.C., Beglinger, C. Gastroenterology (1992) [Pubmed]
  19. A subfamily of 5-HT1D receptor genes. Hartig, P.R., Branchek, T.A., Weinshank, R.L. Trends Pharmacol. Sci. (1992) [Pubmed]
  20. Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Hanada, R., Teranishi, H., Pearson, J.T., Kurokawa, M., Hosoda, H., Fukushima, N., Fukue, Y., Serino, R., Fujihara, H., Ueta, Y., Ikawa, M., Okabe, M., Murakami, N., Shirai, M., Yoshimatsu, H., Kangawa, K., Kojima, M. Nat. Med. (2004) [Pubmed]
  21. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Barrachina, M.D., Martínez, V., Wang, L., Wei, J.Y., Taché, Y. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  22. Huntingtin-associated protein 1 (Hap1) mutant mice bypassing the early postnatal lethality are neuroanatomically normal and fertile but display growth retardation. Dragatsis, I., Zeitlin, S., Dietrich, P. Hum. Mol. Genet. (2004) [Pubmed]
  23. Hypothalamic neuropeptide Y and its gene expression: relation to light/dark cycle and circulating corticosterone. Akabayashi, A., Levin, N., Paez, X., Alexander, J.T., Leibowitz, S.F. Mol. Cell. Neurosci. (1994) [Pubmed]
  24. Neuropeptide Y treatment and food deprivation increase cyclic AMP response element-binding in rat hypothalamus. Sheriff, S., Chance, W.T., Fischer, J.E., Balasubramaniam, A. Mol. Pharmacol. (1997) [Pubmed]
  25. Altered cerebrospinal fluid neuropeptide Y and peptide YY immunoreactivity in anorexia and bulimia nervosa. Kaye, W.H., Berrettini, W., Gwirtsman, H., George, D.T. Arch. Gen. Psychiatry (1990) [Pubmed]
  26. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. Stratford, T.R., Kelley, A.E. J. Neurosci. (1997) [Pubmed]
  27. Peptidergic modulation of neuronal circuitry controlling feeding in Aplysia. Sossin, W.S., Kirk, M.D., Scheller, R.H. J. Neurosci. (1987) [Pubmed]
  28. Endothelin-1 stimulates leptin production in adipocytes. Xiong, Y., Tanaka, H., Richardson, J.A., Williams, S.C., Slaughter, C.A., Nakamura, M., Chen, J.L., Yanagisawa, M. J. Biol. Chem. (2001) [Pubmed]
  29. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Cheung, C.C., Clifton, D.K., Steiner, R.A. Endocrinology (1997) [Pubmed]
  30. Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Ribasés, M., Gratacòs, M., Fernández-Aranda, F., Bellodi, L., Boni, C., Anderluh, M., Cavallini, M.C., Cellini, E., Di Bella, D., Erzegovesi, S., Foulon, C., Gabrovsek, M., Gorwood, P., Hebebrand, J., Hinney, A., Holliday, J., Hu, X., Karwautz, A., Kipman, A., Komel, R., Nacmias, B., Remschmidt, H., Ricca, V., Sorbi, S., Wagner, G., Treasure, J., Collier, D.A., Estivill, X. Hum. Mol. Genet. (2004) [Pubmed]
  31. Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. Hu, Y., Bloomquist, B.T., Cornfield, L.J., DeCarr, L.B., Flores-Riveros, J.R., Friedman, L., Jiang, P., Lewis-Higgins, L., Sadlowski, Y., Schaefer, J., Velazquez, N., McCaleb, M.L. J. Biol. Chem. (1996) [Pubmed]
  32. Elimination of glucagon-like peptide 1R signaling does not modify weight gain and islet adaptation in mice with combined disruption of leptin and GLP-1 action. Scrocchi, L.A., Hill, M.E., Saleh, J., Perkins, B., Drucker, D.J. Diabetes (2000) [Pubmed]
  33. Contribution of melanocortin receptor exoloops to Agouti-related protein binding. Yang, Y.K., Dickinson, C.J., Zeng, Q., Li, J.Y., Thompson, D.A., Gantz, I. J. Biol. Chem. (1999) [Pubmed]
  34. Dopaminergic correlates of motivated behavior: importance of drive. Wilson, C., Nomikos, G.G., Collu, M., Fibiger, H.C. J. Neurosci. (1995) [Pubmed]
  35. Overview of adrenergic anorectic agents. Wellman, P.J. Am. J. Clin. Nutr. (1992) [Pubmed]
  36. Eating from a shared plate affects food consumption in vitamin A-deficient Nepali children. Shankar, A.V., Gittelsohn, J., West, K.P., Stallings, R., Gnywali, T., Faruque, F. J. Nutr. (1998) [Pubmed]
  37. Sucrose consumption increases naloxone-induced c-Fos immunoreactivity in limbic forebrain. Pomonis, J.D., Jewett, D.C., Kotz, C.M., Briggs, J.E., Billington, C.J., Levine, A.S. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2000) [Pubmed]
  38. Hippocampal formation is involved in movement selection: evidence from medial septal cholinergic modulation and concurrent slow-wave (theta rhythm) recording. Oddie, S.D., Kirk, I.J., Whishaw, I.Q., Bland, B.H. Behav. Brain Res. (1997) [Pubmed]
WikiGenes - Universities