The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Genetic and environmental effects on the expression of peptidases and larval viability in Drosophila melanogaster.

The peptidase system in Drosophila melanogaster, consisting of dipeptidase-A, dipeptidase-B, dipeptidase-C and the leucine aminopeptidases, was used as a model to study the adaptive significance of enzyme activity variation. The involvement of the peptidases in osmoregulation has been suggested from the ubiquitous distribution of peptidase activities in nearly all tissues and the high concentration of amino acids and oligopeptides in the hemolymph. Under this hypothesis, larvae counteract increases in environmental osmotic stress by hydrolyzing peptides into amino acids both intra- and extracellularly to increase physiological osmotic concentration. The expression of the peptidases was studied by assaying for peptidase activities in third instar larvae of isogenic lines, which were reared under increasing levels of environmental osmotic stress using either D-mannitol or NaCl. Second and third chromosome substitution isogenic lines were used to assess the relative contribution of regulatory and structural genes in enzyme activity variation. Results indicate that: (1) genetic variation exists for peptidase activities, (2) the effect of osmotic stress is highly variable among peptidases, (3) changes in peptidase activities in response to osmotic stress depend on both genetic background and osmotic effector and (4) peptidase activities are correlated with each other, but these phenotypic correlations depend on genetic background, osmotic effector, and level of osmotic stress. Osmotic concentration in the larval hemolymph is correlated with leucine aminopeptidase activity, but changes in hemolymph osmotic concentration in response to environmental osmotic stress depend on the osmotic effector in the environment. Although these findings suggest that genetic and environmental factors contribute significantly toward the expression of enzymes with similar functions, a relative larval viability study of genotypes that differed significantly in dipeptidase-B (DIP-B) activity revealed that low DIP-B activity did not confer any measurable reduction in larval viability under increasing levels of environmental osmotic stress. These negative results suggest that, either DIP-B does not play a major role in osmoregulation or differential osmoregulation is not related to egg to adult viability in these tests.[1]


WikiGenes - Universities