The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing.

Most processed, e.g. fucosylated, N-glycans on insect glycoproteins terminate in mannose, yet the relevant modifying enzymes require the prior action of N-acetylglucosaminyltransferase I. This led to the hypothesis that a hexosaminidase acts during the course of N-glycan maturation. To determine whether the Drosophila melanogaster genome indeed encodes such an enzyme, a cDNA corresponding to fused lobes (fdl), a putative beta-N-acetylglucosaminidase with a potential transmembrane domain, was cloned. When expressed in Pichia pastoris, the enzyme exhibited a substrate specificity similar to that previously described for a hexosaminidase activity from Sf-9 cells, i.e. it hydrolyzed exclusively the GlcNAc residue attached to the alpha1,3-linked mannose of the core pentasaccharide of N-glycans. It also hydrolyzed p-nitrophenyl-N-acetyl-beta-glucosaminide, but not chitooligosaccharides; in contrast, Drosophila HEXO1 and HEXO2 expressed in Pichia cleaved both these substrates but not N-glycans. The localization of recombinant FDL tagged with green fluorescent protein in Drosophila S2 cells by immunoelectron microscopy showed that this enzyme transits through the Golgi, is present on the plasma membrane and in multivesicular bodies, and is secreted. Finally, the N-glycans of two lines of fdl mutant flies were analyzed by mass spectrometry and reversed-phase high-performance liquid chromatography. The ratio of structures with terminal GlcNAc over those without (i.e. paucimannosidic N-glycans) was drastically increased in the fdl-deficient flies. Therefore, we conclude that the fdl gene encodes a novel hexosaminidase responsible for the occurrence of paucimannosidic N-glycans in Drosophila.[1]

References

  1. The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. Léonard, R., Rendic, D., Rabouille, C., Wilson, I.B., Préat, T., Altmann, F. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities