The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes.

Glutathione S-transferase pi (GST pi) has been shown to reactivate oxidized 1-cysteine peroxiredoxin (1-Cys Prx, Prx VI, Prdx6, and AOP2). We now demonstrate that a heterodimer complex is formed between 1-Cys Prx with a C-terminal His6 tag and GST pi upon incubation of the two proteins at pH 8.0 in buffer containing 20% 1,6-hexanediol to dissociate the homodimers, followed by dialysis against buffer containing 2.5 mM glutathione (GSH) but lacking 1,6-hexanediol. The heterodimer can be purified by chromatography on nickel-nitriloacetic acid agarose in the presence of GSH. N-Terminal sequencing showed that equimolar amounts of the two proteins are present in the isolated complex. In the heterodimer, 1-Cys Prx is fully active toward either H2O2 or phospholipid hydroperoxide, while the GST pi activity is approximately 25% of that of the GST pi homodimer. In contrast, the 1-Cys Prx homodimer lacks peroxidase activity even in the presence of free GSH. The heterodimer is also formed in the presence of S-methylglutathione, but no 1-Cys Prx activity is found under these conditions. The yield of heterodimer is decreased in the absence of 1,6-hexanediol or GSH. Rapid glutathionylation of 1-Cys Prx in the heterodimer is detected by immunoblotting. Subsequently, a disulfide-linked dimer is observed on SDS-PAGE, and the free cysteine content is decreased by 2 per heterodimer. The involvement of particular binding sites in heterodimer formation was tested by site-directed mutagenesis of the two proteins. For 1-Cys Prx, neither Cys47 nor Ser32 is required for heterodimer formation but Cys47 is essential for 1-Cys Prx activation. For GST pi, Cys47 and Tyr7 (at or near the GSH-binding site) are needed for heterodimer formation but three other cysteines are not. We conclude that reactivation of oxidized 1-Cys Prx by GST pi occurs by heterodimerization of 1-Cys Prx and GST pi harboring bound GSH, followed by glutathionylation of 1-Cys Prx and then formation of an intersubunit disulfide. Finally, the GSH-mediated reduction of the disulfide regenerates the reduced active-site sulfhydryl of 1-Cys Prx.[1]


WikiGenes - Universities