The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Competing roles of aldo-keto reductase 1A1 and cytochrome P4501B1 in benzo[a]pyrene-7,8-diol activation in human bronchoalveolar H358 cells: role of AKRs in P4501B1 induction.

Benzo[a]pyrene (BP) requires metabolic activation to electrophiles to exert its deleterious effects. We compared the respective roles of aldo-keto reductase 1A1 (AKR1A1, aldehyde reductase) and P4501B1 in the formation of BP-7,8-dione and BP-tetrols, respectively, in intact bronchoalveolar cells manipulated to express either enzyme. Metabolite formation was confirmed by HPLC/MS and quantitatively measured by HPLC/UV/beta-RAM. In TCDD-treated H358 cells (P4501B1 expression), the anti-BPDE hydrolysis product BP-tetrol-1 increased over 3-12 h to a constant level. In H358 AKR1A1 transfectants, formation of BP-7,8-dione was elevated for 3-12 h but significantly decreased after 24 h. Interestingly, BP-tetrols were also detected in AKR1A1 transfectants even though they do not constitutively express P4501A1/P4501B1 enzymes. Northern and Western blotting confirmed the induction of P4501B1 by BP-7,8-dione in parental cells and the induction of P4501B1 by BP-7,8-diol in AKR1A1-transfected cells. P4501B1 induction was blocked in AKR1A1 transfectants by the AKR1A1 inhibitor (sulfonylnitromethane), the o-quinone scavenger (N-acetyl-l-cysteine), or the cytosolic AhR antagonist (diflubenzuron). Attenuation of P4501B1 induction in these cells was verified by measuring a decrease in BP-tetrol formation. Our studies show that the formation of BP-7,8-dione by AKR1A1 in human bronchoalveolar cells leads to an induction of P4501B1 and that a functional consequence of this induction is elevated anti-BPDE production as detected by increased BP-tetrol formation. Therefore, the role of AKR1A1 in the activation of BP-7,8-diol is bifunctional; that is, it directly activates BP-7,8-diol to the reactive and redox-active PAH o-quinone (BP-7,8-dione) and it indirectly trans- activates the P4501B1 gene by generating the aryl hydrocarbon receptor ( AhR) ligand BP-7,8-dione.[1]

References

 
WikiGenes - Universities