The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins.

The SpvB protein from Salmonella enterica was recently discovered as an actin-ADP-ribosylating toxin. SpvB is most likely delivered via a type-III secretion system into eukaryotic cells and does not have a binding/ translocation component. This is in contrast to the family of binary actin-ADP-ribosylating toxins from various Bacillus and Clostridium species. However, there are homologies in amino acid sequences between the C-terminal domain of SpvB and the catalytic domains of the actin-ADP-ribosylating toxins such as C2 toxin from Clostridium botulinum and iota toxin from Clostridium perfringens. We compared the biochemical properties of the catalytic C-terminal domain of SpvB (C/SpvB) with the enzyme components of C2 toxin and iota toxin. The specificity of C/SpvB concerning the modification of G- or F-actin was comparable to the C2 and iota toxins, although there were distinct differences regarding the recognition of actin isoforms. C/SpvB and iota toxin modify both muscle alpha-actin and nonmuscle beta/gamma-actin, whereas C2 toxin only modifies beta/gamma-actin. In contrast to the iota and C2 toxins, C/SpvB possessed no detectable glycohydrolase activity in the absence of a protein substrate. The maximal reaction rates were comparable for all toxins, whereas variable K(m) values for NAD were evident. We identified arginine-177 as the modification site for C/SpvB with the actin homologue protein Act88F from Drosophila.[1]

References

 
WikiGenes - Universities