Functional characterization of opioid receptor ligands by aequorin luminescence-based calcium assay.
A functional assay, based on aequorin-derived luminescence triggered by receptor-mediated changes in intracellular calcium levels, was used to examine relative potency and efficacy of the mu-opioid agonists endomorphin-1, endomorphin-2, morphiceptin, and their position 3-substituted analogs, as well as the delta-agonist deltorphin-II. The results of the aequorin assay, performed on recombinant cell lines, were compared with those obtained in the functional assay on isolated tissue preparations (guinea pig ileum and mouse vas deferens). A range of nine opioid peptide ligands produced a similar rank order of potency for the mu- and delta-opioid receptor agonists in both functional assays. The highest potency at the mu-receptor was observed for endomorphin-1, endomorphin-2, and [D-1-Nal3]morphiceptin, whereas deltorphin-II was the most potent delta-receptor agonist. In the aequorin assay, the mu- and delta-agonist-triggered luminescence was inhibited by the opioid antagonists naloxone and naltrindole, respectively. We can conclude that the use of the aequorin assay for new mu- and delta-receptor-selective opioid analogs gives pharmacologically relevant data and allows high-throughput compound screening, which does not involve radioactivity or animal tissues. This is the first study that validates the application of this assay in the screening of opioid analogs.[1]References
- Functional characterization of opioid receptor ligands by aequorin luminescence-based calcium assay. Fichna, J., Gach, K., Piestrzeniewicz, M., Burgeon, E., Poels, J., Broeck, J.V., Janecka, A. J. Pharmacol. Exp. Ther. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg