The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Adenoviral gene transfer of a mutant surfactant enzyme ameliorates pseudomonas-induced lung injury.

Surfactant deficiency is an important contributor to the acute respiratory distress syndrome, a disorder that commonly occurs after bacterial sepsis. CTP:phosphocholine cytidylyltransferase (CCTalpha) is the rate-limiting enzyme required for the biosynthesis of dipalmitoylphosphatidylcholine (DPPC), the major phospholipid of surfactant. In this study, a cDNA encoding a novel, calpain-resistant mutant CCTalpha enzyme was delivered intratracheally in mice using a replication-deficient adenovirus 5 CTP:phosphocholine cytidylyltransferase construct (Ad5-CCT(Penta)) in models of bacterial sepsis. Ad5-CCT(Penta) gene transfer produced high-level CCTalpha gene expression, increased alveolar surfactant (DPPC) levels and improved lung surface tension and pressure-volume relationships relative to control mice. Pseudomonas aeruginosa (PA103) decreased DPPC synthesis, in part, via calpain-mediated degradation of CCTalpha. Deleterious effects of Pseudomonas on surfactant were lessened after infection with a mutant strain lacking the type III exotoxin, Exo U. Replication-deficient adenovirus 5 CTP:phosphocholine cytidylyltransferase gene delivery improved lung biophysical properties by optimizing surface activity in this Pseudomonas model of proteinase-mediated lung injury. The studies are the first demonstration of in vivo gene transfer of a lipogenic enzyme resulting in improved lung mechanics. The studies suggest that augmentation of DPPC synthesis via gene delivery of CCTalpha can attenuate impaired lung function in surfactant-deficient states such as bacterial sepsis.[1]

References

  1. Adenoviral gene transfer of a mutant surfactant enzyme ameliorates pseudomonas-induced lung injury. Zhou, J., Wu, Y., Henderson, F., McCoy, D.M., Salome, R.G., McGowan, S.E., Mallampalli, R.K. Gene Ther. (2006) [Pubmed]
 
WikiGenes - Universities