The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

LPGP1  -  lipogenic protein 1

Homo sapiens

This record was replaced with 7069.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of LPGP1


Psychiatry related information on LPGP1


High impact information on LPGP1

  • When macrophages are stimulated with an endotoxin, they produce a factor or factors, termed cachectin, that inhibits the activity of fat-producing (lipogenic) enzymes in cultured adipocytes [8].
  • The thermogenic effect of CS is small or absent in heavy smokers while the potentially atherogenic effect is maintained, and cessation of CS does not induce a rebound lipogenic milieu that specifically favors accrual of body fat in the absence of increased food intake [9].
  • Precursor enrichments predicted from isotopomer ratios were close to measured SMX-acetate enrichments, indicating that SMX-acetate samples the true lipogenic acetyl-CoA pool [10].
  • As a functional consequence, the lipogenic effect of SREBP2(N) in liver cells was suppressed by ATF6(N) [11].
  • Phagocytosis triggered the proteolytic activation of two lipogenic transcription factors, sterol regulatory element binding protein-1a (SREBP-1a) and SREBP-2 [12].

Chemical compound and disease context of LPGP1


Biological context of LPGP1


Anatomical context of LPGP1


Associations of LPGP1 with chemical compounds

  • The mRNA of the lipogenic transcription factor, carbohydrate response element-binding protein, was undetectable in undifferentiated 3T3-L1 preadipocytes but rose dramatically during differentiation in 25 mM, but not in 5 mM, glucose [27].
  • Northern blot analysis of the steady-state mRNA levels of seven different lipogenic enzymes revealed that androgens coordinately stimulate the expression of enzymes belonging to the two major lipogenic pathways: fatty acid synthesis and cholesterol synthesis [2].
  • These data support the hypothesis that SREBPs are involved in the coordinate regulation of lipogenic gene expression by androgens and provide evidence for the existence of a cascade mechanism of androgen-regulated gene expression [2].
  • Lipid synthesis was accompanied by increased transcription of several lipogenic proteins, including the low-density lipoprotein receptor, enzymes required for cholesterol synthesis (3-hydroxy-3-methylglutaryl CoA synthase, 3-hydroxy-3-methylglutaryl CoA reductase), and fatty acid synthase [12].
  • As previous data suggested that protein kinase C plays an important role in the action of insulin and in the insulin-like effects of hGH in rat adipocytes, we tested the effects of sphingosine, a potent inhibitor of protein kinase C, on the lipogenic activity of both hormones [28].

Physical interactions of LPGP1


Regulatory relationships of LPGP1

  • This observation led us to hypothesize that PUFA coordinately inhibit lipogenic gene transcription by suppressing the expression of SREBP-1 [30].
  • Prolactin replacement in bromocriptine-treated hamsters reversed the inhibitory effect of bromocriptine on hepatocyte lipogenesis and promoted dramatic lipogenic responses to insulin at 07.00 h [31].
  • The S14 (spot 14) gene encodes a protein that is predominantly expressed in lipogenic tissues, such as the liver, white and brown adipose tissues and the lactating mammary glands [32].
  • Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1 [33].

Other interactions of LPGP1


Analytical, diagnostic and therapeutic context of LPGP1


  1. Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Cao, J., Li, J.L., Li, D., Tobin, J.F., Gimeno, R.E. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  2. Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Swinnen, J.V., Ulrix, W., Heyns, W., Verhoeven, G. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  3. Chromosome 12 breakpoints are cytogenetically different in benign and malignant lipogenic tumors: localization of breakpoints in lipoma to 12q15 and in myxoid liposarcoma to 12q13.3. Mrózek, K., Karakousis, C.P., Bloomfield, C.D. Cancer Res. (1993) [Pubmed]
  4. Progesterone stimulates adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c gene expression. potential mechanism for the lipogenic effect of progesterone in adipose tissue. Lacasa, D., Le Liepvre, X., Ferre, P., Dugail, I. J. Biol. Chem. (2001) [Pubmed]
  5. Hyperinsulinemia and triglyceride-rich lipoproteins. Steiner, G., Lewis, G.F. Diabetes (1996) [Pubmed]
  6. Epiphyseal scar of the femoral head: risk factor of osteonecrosis. Jiang, C.C., Shih, T.T. Radiology. (1994) [Pubmed]
  7. The effects of weight cycling on serum leptin levels and lipogenic enzyme activities in adipose tissue. Kochan, Z., Karbowska, J., Swierczynski, J. J. Physiol. Pharmacol. (2006) [Pubmed]
  8. A macrophage factor inhibits adipocyte gene expression: an in vitro model of cachexia. Torti, F.M., Dieckmann, B., Beutler, B., Cerami, A., Ringold, G.M. Science (1985) [Pubmed]
  9. Effects of cigarette smoking and its cessation on lipid metabolism and energy expenditure in heavy smokers. Hellerstein, M.K., Benowitz, N.L., Neese, R.A., Schwartz, J.M., Hoh, R., Jacob, P., Hsieh, J., Faix, D. J. Clin. Invest. (1994) [Pubmed]
  10. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. Hellerstein, M.K., Christiansen, M., Kaempfer, S., Kletke, C., Wu, K., Reid, J.S., Mulligan, K., Hellerstein, N.S., Shackleton, C.H. J. Clin. Invest. (1991) [Pubmed]
  11. ATF6 modulates SREBP2-mediated lipogenesis. Zeng, L., Lu, M., Mori, K., Luo, S., Lee, A.S., Zhu, Y., Shyy, J.Y. EMBO J. (2004) [Pubmed]
  12. Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins. Castoreno, A.B., Wang, Y., Stockinger, W., Jarzylo, L.A., Du, H., Pagnon, J.C., Shieh, E.C., Nohturfft, A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  13. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. Brusselmans, K., Vrolix, R., Verhoeven, G., Swinnen, J.V. J. Biol. Chem. (2005) [Pubmed]
  14. Androgens stimulate lipogenic gene expression in prostate cancer cells by activation of the sterol regulatory element-binding protein cleavage activating protein/sterol regulatory element-binding protein pathway. Heemers, H., Maes, B., Foufelle, F., Heyns, W., Verhoeven, G., Swinnen, J.V. Mol. Endocrinol. (2001) [Pubmed]
  15. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Unger, R.H. Trends Endocrinol. Metab. (2003) [Pubmed]
  16. Regulation of human adipocyte gene expression by thyroid hormone. Viguerie, N., Millet, L., Avizou, S., Vidal, H., Larrouy, D., Langin, D. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  17. S14 protein in breast cancer cells: direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Martel, P.M., Bingham, C.M., McGraw, C.J., Baker, C.L., Morganelli, P.M., Meng, M.L., Armstrong, J.M., Moncur, J.T., Kinlaw, W.B. Exp. Cell Res. (2006) [Pubmed]
  18. The subcellular localization of the ChoRE-binding protein, encoded by the Williams-Beuren syndrome critical region gene 14, is regulated by 14-3-3. Merla, G., Howald, C., Antonarakis, S.E., Reymond, A. Hum. Mol. Genet. (2004) [Pubmed]
  19. Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. Coulouarn, C., Gomez-Quiroz, L.E., Lee, J.S., Kaposi-Novak, P., Conner, E.A., Goldina, T.A., Onishchenko, G.E., Factor, V.M., Thorgeirsson, S.S. Hepatology (2006) [Pubmed]
  20. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Brusselmans, K., De Schrijver, E., Verhoeven, G., Swinnen, J.V. Cancer Res. (2005) [Pubmed]
  21. Transcriptional control of metabolic regulation genes by carbohydrates. Vaulont, S., Kahn, A. FASEB J. (1994) [Pubmed]
  22. Leptin and its role in lipid metabolism. Hynes, G.R., Jones, P.J. Curr. Opin. Lipidol. (2001) [Pubmed]
  23. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Girard, J., Ferré, P., Foufelle, F. Annu. Rev. Nutr. (1997) [Pubmed]
  24. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Grün, F., Watanabe, H., Zamanian, Z., Maeda, L., Arima, K., Cubacha, R., Gardiner, D.M., Kanno, J., Iguchi, T., Blumberg, B. Mol. Endocrinol. (2006) [Pubmed]
  25. Inhibition of tumor-associated fatty acid synthase activity antagonizes estradiol- and tamoxifen-induced agonist transactivation of estrogen receptor (ER) in human endometrial adenocarcinoma cells. Menendez, J.A., Oza, B.P., Atlas, E., Verma, V.A., Mehmi, I., Lupu, R. Oncogene (2004) [Pubmed]
  26. Insulin resistance and body fat distribution. Yamashita, S., Nakamura, T., Shimomura, I., Nishida, M., Yoshida, S., Kotani, K., Kameda-Takemuara, K., Tokunaga, K., Matsuzawa, Y. Diabetes Care (1996) [Pubmed]
  27. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Li, J., Takaishi, K., Cook, W., McCorkle, S.K., Unger, R.H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  28. Sphingosine, an inhibitor of protein kinase C, suppresses the insulin-like effects of growth hormone in rat adipocytes. Smal, J., De Meyts, P. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  29. Fatty-acid biosynthesis in man, a pathway of minor importance. Purification, optimal assay conditions, and organ distribution of fatty-acid synthase. Weiss, L., Hoffmann, G.E., Schreiber, R., Andres, H., Fuchs, E., Körber, E., Kolb, H.J. Biol. Chem. Hoppe-Seyler (1986) [Pubmed]
  30. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. Xu, J., Nakamura, M.T., Cho, H.P., Clarke, S.D. J. Biol. Chem. (1999) [Pubmed]
  31. Prolactin permits the expression of a circadian variation in lipogenic responsiveness to insulin in hepatocytes of the golden hamster (Mesocricetus auratus). Cincotta, A.H., Meier, A.H. J. Endocrinol. (1985) [Pubmed]
  32. The spot 14 protein inhibits growth and induces differentiation and cell death of human MCF-7 breast cancer cells. Sanchez-Rodriguez, J., Kaninda-Tshilumbu, J.P., Santos, A., Perez-Castillo, A. Biochem. J. (2005) [Pubmed]
  33. Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity. McCarty, M.F. Med. Hypotheses (1999) [Pubmed]
  34. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Zouboulis, C.C., Seltmann, H., Hiroi, N., Chen, W., Young, M., Oeff, M., Scherbaum, W.A., Orfanos, C.E., McCann, S.M., Bornstein, S.R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  35. In support of fatty acid synthase (FAS) as a metabolic oncogene: extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells. Menendez, J.A., Decker, J.P., Lupu, R. J. Cell. Biochem. (2005) [Pubmed]
  36. Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells. Cozzone, D., Debard, C., Dif, N., Ricard, N., Disse, E., Vouillarmet, J., Rabasa-Lhoret, R., Laville, M., Pruneau, D., Rieusset, J., Lefai, E., Vidal, H. Diabetologia (2006) [Pubmed]
  37. The "Spot 14" gene resides on the telomeric end of the 11q13 amplicon and is expressed in lipogenic breast cancers: implications for control of tumor metabolism. Moncur, J.T., Park, J.P., Memoli, V.A., Mohandas, T.K., Kinlaw, W.B. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  38. Adipocytic differentiation and liver x receptor pathways regulate the accumulation of triacylglycerols in human vascular smooth muscle cells. Davies, J.D., Carpenter, K.L., Challis, I.R., Figg, N.L., McNair, R., Proudfoot, D., Weissberg, P.L., Shanahan, C.M. J. Biol. Chem. (2005) [Pubmed]
  39. Central nervous system and peripheral abnormalities: clues to the understanding of obesity and NIDDM. Jeanrenaud, B. Diabetologia (1994) [Pubmed]
  40. Glycemic index and obesity. Brand-Miller, J.C., Holt, S.H., Pawlak, D.B., McMillan, J. Am. J. Clin. Nutr. (2002) [Pubmed]
  41. Practical aspects of indirect calorimetry in laboratory animals. Even, P.C., Mokhtarian, A., Pele, A. Neuroscience and biobehavioral reviews. (1994) [Pubmed]
  42. Site-specific reduction of oxidative and lipid metabolism in adipose tissue of 3'-azido-3'-deoxythymidine-treated rats. Deveaud, C., Beauvoit, B., Reynaud, A., Bonnet, J. Antimicrob. Agents Chemother. (2007) [Pubmed]
WikiGenes - Universities