The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid.

Production of superoxide radical during oxidation of dihydroorotate in rat liver mitochondria was not affected by antimycin A, thenoyltrifluoroacetone, or added ubiquinone but was inhibited by orotate, a product inhibitor of dihydroorotate dehydrogenase. It appears likely that superoxide is generated at the primary dehydrogenase. Dihydroorotate dehydrogenase differs from succinate dehydrogenase both in its utilization of ubiquinone and in the mechanism of cytochrome b reduction. Thenoyltrifluoroacetone completely inhibits fumarate synthesis and reduction of cytochrome b by succinate. Formation of orotate is only partially inhibited by thenolytrifluoroacetone and the inhibitor does not prevent reduction of cytochrome b by dihydroorotate. It is proposed that several pathways exist for linkage of the primary dihydrorotate dehydrogenase with the electron transport chain. One route involves electron transfer from ubiquinone to cytochrome c and is inhibited by thenoyltrifluoroacetone. A second route bypasses ubiquinone and is inhibited by antimycin A. A third pathway utilizes both ubiquinone and cytochrome b and is partiayly inhibited by either thenoyltrifluoroacetone or antimycin A.[1]

References

 
WikiGenes - Universities