The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice.

Hydrocephalus is caused by an imbalance in cerebrospinal fluid (CSF) production and absorption, resulting in excess ventricular fluid accumulation and neurologic impairment. Current therapy for hydrocephalus involves surgical diversion of excess ventricular fluid. The water-transporting protein aquaporin-4 (AQP4) is expressed at the brain-CSF and blood-brain barriers. Here, we provide evidence for AQP4-facilitated CSF absorption in hydrocephalus by a transparenchymal pathway into the cerebral vasculature. A mouse model of obstructive hydrocephalus was created by injecting kaolin (2.5 mg/mouse) into the cisterna magna. Intracranial pressure (ICP) was approximately 5 mm Hg and ventricular size <0.3 mm(3) in control mice. Lateral ventricle volume increased to 3.7+/-0.5 and 5.1+/-0.5 mm(3) in AQP4 null mice at 3 and 5 days after injection, respectively, significantly greater than 2.6+/-0.3 and 3.5+/-0.5 mm(3) in wildtype mice (P<0.005). The corresponding ICP was 22+/-2 mm Hg at 3 days in AQP4 null mice, significantly greater than 14+/-1 mm Hg in wildtype mice (P<0.005). Brain parenchymal water content increased by 2% to 3% by 3 days, corresponding to approximately 50 muL of fluid, indicating backflow of CSF from the ventricle into the parenchymal extracellular space. A multi-compartment model of hydrocephalus based on experimental data from wildtype mice accurately reproduced the greater severity of hydrocephalus in AQP4 null mice, and predicted a much reduced severity if AQP4 expression/function were increased. Our results indicate a significant role for AQP4- mediated transparenchymal CSF absorption in hydrocephalus and provide a rational basis for evaluation of AQP4 induction as a nonsurgical therapy for hydrocephalus.Journal of Cerebral Blood Flow & Metabolism (2006) 26, 1527-1537. doi:10.1038/sj.jcbfm.9600306; published online 22 March 2006.[1]

References

  1. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. Bloch, O., Auguste, K.I., Manley, G.T., Verkman, A.S. J. Cereb. Blood Flow Metab. (2006) [Pubmed]
 
WikiGenes - Universities