The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Impact of Enterococcus faecalis on the Bactericidal Activities of Arbekacin, Daptomycin, Linezolid, and Tigecycline against Methicillin-Resistant Staphylococcus aureus in a Mixed-Pathogen Pharmacodynamic Model.

We inoculated an in vitro pharmacodynamic model simultaneously with clinical isolates of methicillin-resistant Staphylococcus aureus and an enterocin-producing enterococcus (vancomycin-resistant Enterococcus faecalis, ampicillin susceptible) at 7 log(10) CFU/ml to examine enterocin effects and antimicrobial activity on staphylococci. The investigated antimicrobial regimens were 100 mg arbekacin every 12 h (q12h), 6 mg daptomycin per kg of body weight/day, 600 mg linezolid q12h, and 100 mg tigecycline q24h alone and in combination (daptomycin, linezolid, and tigecycline) with arbekacin. Simulations were performed in triplicate; bacterial quantification occurred over 48 h, and development of resistance was evaluated throughout. When we evaluated the impact of antimicrobial activity against S. aureus alone, daptomycin demonstrated bactericidal activity (>/=3 log(10) CFU/ml kill), whereas arbekacin, linezolid, and tigecycline displayed bacteriostatic activities (<3 log(10) CFU/ml kill). In the mixed-pathogen model, early and distinctive stunting of S. aureus growth was noted (1.5 log CFU/ml difference) in the presence of enterocin-producing E. faecalis compared to growth controls run individually (P = 0.02). Most noteworthy was that in the presence of enterocin-producing E. faecalis, bactericidal activity was observed with arbekacin and tigecycline and with the addition of arbekacin to linezolid. Antagonism was noted for the combination of tigecycline and arbekacin against S. aureus in the presence of enterocin-producing E. faecalis. Our research demonstrates that the inhibitory effect of E. faecalis contributed significantly to its overall antimicrobial impact on S. aureus. This contribution was enhanced or improved compared to the activity of each antimicrobial alone. Further research is warranted to determine the impact of polymicrobial infections on antimicrobial activity.[1]


WikiGenes - Universities