The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Arbekacin     (2S)-4-amino-N- [(1R,2S,3S,4R,5S)-5-amino- 4...

Synonyms: Haberacin, Arbekacina, Arbekacine, Arbekacinum, DKB-AHB, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Haberacin


High impact information on Haberacin

  • The population pharmacokinetics of arbekacin was investigated in the Japanese, using 353 patients infected with MRSA and 50 healthy or renally impaired volunteers [6].
  • The C(max), C(min), and AUC of arbekacin were associated with the probability of clinical cure/improvement during monotherapy [1].
  • Arbekacin, a derivative of dibekacin, is an aminoglycoside developed and widely used in Japan for the treatment of patients infected with methicillin-resistant Staphylococcus aureus (MRSA) [6].
  • We encountered three clinical isolates of methicillin-resistant Staphylococcus aureus which were susceptible to netilmicin and arbekacin in the absence of beta-lactam antibiotics but which were resistant to them in the presence of beta-lactam antibiotics [7].
  • A high rate of elimination of ABK was attained for each patient while the patient was on HD (range, 0.20 to 0.42 h-1; mean 0.28 +/- 0.08 h-1) by using high-performance dialyzers provided with membranes made of either polymethylmethacrylate, cellulose triacetate (CTA), or ethylene vinyl alcohol [3].

Chemical compound and disease context of Haberacin


Biological context of Haberacin


Anatomical context of Haberacin

  • Effects of arbekacin and vancomycin on release of lactate dehydrogenase and fragmentation of DNA in LLC-PK1 kidney epithelial cells [16].
  • In the ileum, the ratios became smaller with increase in arbekacin concentration applied [17].
  • This study was undertaken to examine the secretory transport of arbekacin, an aminoglycoside antibiotic, in the rat small intestine and to compare it with those in Caco-2 and LLC-PK1 cells [17].
  • There was no directionality in arbekacin permeation across Caco-2 cell monolayers, suggesting the absence or very slight expression of the secretory system for arbekacin in this cell line [17].
  • Serosal-to-mucosal (secretory)/mucosal-to-serosal (absorptive) permeation ratios of 0.5 mM arbekacin were 2.8 in the jejunum and 7.0 in the ileum, respectively, indicating that arbekacin permeation was highly secretory-oriented [17].

Associations of Haberacin with other chemical compounds

  • The in vitro and in vivo antibacterial activities of SM-17466, a new 1 beta-methyl carbapenem, were evaluated against a wide range of clinical bacterial isoaltes and compared with the activities of meropenem, imipenem, vancomycin, and arbekacin [18].
  • The combination of arbekacin plus vancomycin produced synergistic killing against 12 of 13 gentamicin-resistant MRSA isolates [19].
  • METHODS: We evaluated the effects of panipenem (PAPM) combined with 3 aminoglycosides, arbekacin, amikacin, and netilmicin, and vancomicin (VCM) with an agar dilution checkerboard technique and the fractional inhibitory concentration index against 47 strains of MRSA and 56 strains of P. aeruginosa [20].
  • The effect of TAK-599 against systemic infection caused by clinical isolates of MRSA in mice was comparable or superior to that of vancomycin, linezolid, teicoplanin, and arbekacin [21].

Gene context of Haberacin

  • The results of this study strongly suggest that a specialized efflux system other than P-glycoprotein and multidrug resistance proteins was involved in the secretory transport of arbekacin in the rat intestine [17].
  • The majority of isolates produced coagulase type II (75.5%) and beta-lactamase (72. 6%); there was high susceptibility to arbekacin (84.9%) but no resistance to vancomycin [22].
  • About 90% of recent isolates belonged to type L21, indicating the spread of a specific type of MRSA in Japan. Of the type L21 strains, 41.9% included the aac(6')/aph(2") gene, which was one of the risk factors of arbekacin (ABK) resistance, but only 5.5% were resistant to ABK [23].
  • Although arbekacin is inactivated by the enzyme APH (2")/AAC (6') which can modify both gentamicin and tobramycin, the rate of modification of arbekacin by this enzyme is only 17% or less of that of gentamicin [24].

Analytical, diagnostic and therapeutic context of Haberacin


  1. Pharmacokinetic-Pharmacodynamic Relationship of Arbekacin for Treatment of Patients Infected with Methicillin-Resistant Staphylococcus aureus. Sato, R., Tanigawara, Y., Kaku, M., Aikawa, N., Shimizu, K. Antimicrob. Agents Chemother. (2006) [Pubmed]
  2. Efficacies of vancomycin, arbekacin, and gentamicin alone or in combination against methicillin-resistant Staphylococcus aureus in an in vitro infective endocarditis model. Lee, D.G., Chun, H.S., Yim, D.S., Choi, S.M., Choi, J.H., Yoo, J.H., Shin, W.S., Kang, M.W. Antimicrob. Agents Chemother. (2003) [Pubmed]
  3. Administration of aminoglycosides to hemodialysis patients immediately before dialysis: a new dosing modality. Matsuo, H., Hayashi, J., Ono, K., Andoh, K., Andoh, Y., Sano, Y., Saruki, K., Tanaka, J., Yamashita, M., Nakamura, K., Kubo, K. Antimicrob. Agents Chemother. (1997) [Pubmed]
  4. Efficacy of ampicillin plus arbekacin in experimental rabbit endocarditis caused by an Enterococcus faecalis strain with high-level gentamicin resistance. Kak, V., Donabedian, S.M., Zervos, M.J., Kariyama, R., Kumon, H., Chow, J.W. Antimicrob. Agents Chemother. (2000) [Pubmed]
  5. Comparative studies of the bactericidal, morphological and post-antibiotic effects of arbekacin and vancomycin against methicillin-resistant Staphylococcus aureus. Watanabe, T., Ohashi, K., Matsui, K., Kubota, T. J. Antimicrob. Chemother. (1997) [Pubmed]
  6. Population Pharmacokinetics of Arbekacin in Patients Infected with Methicillin-Resistant Staphylococcus aureus. Tanigawara, Y., Sato, R., Morita, K., Kaku, M., Aikawa, N., Shimizu, K. Antimicrob. Agents Chemother. (2006) [Pubmed]
  7. Antagonism between aminoglycosides and beta-lactams in a methicillin-resistant Staphylococcus aureus isolate involves induction of an aminoglycoside-modifying enzyme. Ida, T., Okamoto, R., Nonoyama, M., Irinoda, K., Kurazono, M., Inoue, M. Antimicrob. Agents Chemother. (2002) [Pubmed]
  8. Comparative evaluation of the in vitro antimycobacterial activities of six aminoglycoside antibiotics using an agar dilution method. Udou, T. Journal of chemotherapy (Florence, Italy) (2006) [Pubmed]
  9. Synergistic effect of fosfomycin and arbekacin on a methicillin-resistant Staphylococcus aureus-induced biofilm in a rat model. Morikawa, K., Nonaka, M., Yoshikawa, Y., Torii, I. Int. J. Antimicrob. Agents (2005) [Pubmed]
  10. Synthesis of 1-N-[(2S,4S)- and (2S,4R)-5-amino-4-fluoro-2-hydroxypentanoyl]dibekacins (study on structure-toxicity relationships). Takahashi, Y., Kohno, J., Tsuchiya, T. Carbohydr. Res. (1998) [Pubmed]
  11. Synthesis of 2''-amino-2''-deoxyarbekacin and its analogs having potent activity against methicillin-resistant Staphylococcus aureus. Kondo, S., Ikeda, Y., Ikeda, D., Takeuchi, T., Usui, T., Ishii, M., Kudo, T., Gomi, S., Shibahara, S. J. Antibiot. (1994) [Pubmed]
  12. In vitro activities of arbekacin, alone and in combination, against methicillin-resistant Staphylococcus aureus. Kono, K., Takeda, S., Tatara, I., Arakawa, K. The Japanese journal of antibiotics. (1994) [Pubmed]
  13. Nasopharyngeal decolonization of methicillin-resistant Staphylococcus aureus can reduce PEG peristomal wound infection. Horiuchi, A., Nakayama, Y., Kajiyama, M., Fujii, H., Tanaka, N. Am. J. Gastroenterol. (2006) [Pubmed]
  14. Characterization of a bifunctional aminoglycoside-modifying enzyme with novel substrate specificity and its gene from a clinical isolate of methicillin-resistant Staphylococcus aureus with high arbekacin resistance. Ishino, K., Ishikawa, J., Ikeda, Y., Hotta, K. J. Antibiot. (2004) [Pubmed]
  15. Integration analysis of pSK41 in the chromosome of a methicillin-resistant Staphylococcus aureus K-1. McElgunn, C.J., Zahurul, M., Bhuyian, A., Sugiyama, M. J. Basic Microbiol. (2002) [Pubmed]
  16. Effects of arbekacin and vancomycin on release of lactate dehydrogenase and fragmentation of DNA in LLC-PK1 kidney epithelial cells. Nakamura, T., Kokuryo, T., Okuda, M., Hashimoto, Y., Inui, K. Pharm. Res. (1999) [Pubmed]
  17. Arbekacin is actively secreted in the rat intestine via a different efflux system from P-glycoprotein. Saitoh, H., Arashiki, Y., Oka, A., Oda, M., Hatakeyama, Y., Kobayashi, M., Hosoi, K. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. (2003) [Pubmed]
  18. Antimicrobial activity of SM-17466, a novel carbapenem antibiotic with potent activity against methicillin-resistant Staphylococcus aureus. Sumita, Y., Nouda, H., Kanazawa, K., Fukasawa, M. Antimicrob. Agents Chemother. (1995) [Pubmed]
  19. In-vitro activity of arbekacin alone and in combination with vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus. You, I., Kariyama, R., Zervos, M.J., Kumon, H., Chow, J.W. Diagn. Microbiol. Infect. Dis. (2000) [Pubmed]
  20. Combined effects of panipenem and aminoglycosides on methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Katou, K., Nakamura, A., Kato, T., Tonegawa, K., Kutsuna, T., Niwa, T., Morita, H., Itoh, M. Chemotherapy. (2005) [Pubmed]
  21. In vitro antimicrobial activity of T-91825, a novel anti-MRSA cephalosporin, and in vivo anti-MRSA activity of its prodrug, TAK-599. Iizawa, Y., Nagai, J., Ishikawa, T., Hashiguchi, S., Nakao, M., Miyake, A., Okonogi, K. J. Infect. Chemother. (2004) [Pubmed]
  22. Methicillin-resistant Staphylococcus aureus (MRSA) isolated at Fukuoka University Hospital and hospitals and clinics in the Fukuoka city area. Takeda, S., Yasunaka, K., Kono, K., Arakawa, K. Int. J. Antimicrob. Agents (2000) [Pubmed]
  23. Trends of arbekacin-resistant MRSA strains in Japanese hospitals (1979 to 2000). Tsuchizaki, N., Ishino, K., Saito, F., Ishikawa, J., Nakajima, M., Hotta, K. J. Antibiot. (2006) [Pubmed]
  24. Antimicrobial activity of arbekacin, a new aminoglycoside antibiotic, against methicillin-resistant Staphylococcus aureus. Inoue, M., Nonoyama, M., Okamoto, R., Ida, T. Drugs under experimental and clinical research. (1994) [Pubmed]
  25. Phenotypic and genotypic aminoglycoside resistance in blood culture isolates of coagulase-negative staphylococci from a single neonatal intensive care unit, 1989-2000. Klingenberg, C., Sundsfjord, A., Rønnestad, A., Mikalsen, J., Gaustad, P., Flaegstad, T. J. Antimicrob. Chemother. (2004) [Pubmed]
  26. Usefulness of PCR-Restriction Fragment Length Polymorphism Typing of the Coagulase Gene To Discriminate Arbekacin-Resistant Methicillin-Resistant Staphylococcus aureus Strains. Ishino, K., Tsuchizaki, N., Ishikawa, J., Hotta, K. J. Clin. Microbiol. (2007) [Pubmed]
  27. Antibiotic-loaded hydroxyapatite blocks in the treatment of experimental osteomyelitis in rats. Itokazu, M., Ohno, T., Tanemori, T., Wada, E., Kato, N., Watanabe, K. J. Med. Microbiol. (1997) [Pubmed]
  28. A novel drug delivery system for osteomyelitis using porous hydroxyapatite blocks loaded by centrifugation. Itokazu, M., Matsunaga, T., Kumazawa, S., Yang, W. Journal of applied biomaterials : an official journal of the Society for Biomaterials. (1995) [Pubmed]
WikiGenes - Universities