The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The Rhizobium leguminosarum regulator IrrA affects the transcription of a wide range of genes in response to Fe availability.

We show that an unusual transcriptional regulator, called IrrA, regulates many genes in the symbiotic N2-fixing bacterium Rhizobium leguminosarum in response to iron availability. Several operons in R. leguminosarum are expressed at lower levels in cells grown in Fe-depleted compared to Fe-replete medium. These include hemA1, which encodes the haem biosynthesis enzyme amino-levulinic acid synthase; sufS2BCDS1XA, which specify enzymes for FeS cluster synthesis; rirA, a global, Fe-responsive transcriptional repressor; RL0400, which likely encodes an unusual FeS cluster scaffold; and the possible ferri-siderophore ABC transporter rrp1. Reduced expression in Fe-depleted medium was effected by IrrA, a member of the Fur super-family, which in Bradyrhizobium, the symbiont of soybeans, and in the mammalian pathogen Brucella, is unstable in Fe-replete conditions, due to an interaction with haem. The R. leguminosarum IrrA likely interacts with ICE (iron-control element) motifs, conserved sequences near the promoters of its target genes. The rirA, sufS2BCDS1XA and rrp1 genes are also known to be regulated by RirA, which represses their expression in Fe-replete medium. We present a possible model for iron-responsive gene regulation in Rhizobium, in which the IrrA and RirA regulators, working in parallel, respond to the intracellular availability of haem and, possibly, of FeS clusters respectively. Thus, these regulators may sense the physiological consequences of extraneous Fe concentrations, rather than the concentration of Fe per se, as happens in those bacteria (e.g. Escherichia coli) in which the ferric uptake regulator Fur is the global Fe-responsive gene regulator.[1]


  1. The Rhizobium leguminosarum regulator IrrA affects the transcription of a wide range of genes in response to Fe availability. Todd, J.D., Sawers, G., Rodionov, D.A., Johnston, A.W. Mol. Genet. Genomics (2006) [Pubmed]
WikiGenes - Universities