The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Brucella

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Brucella

 

High impact information on Brucella

  • Brucella CbetaG is thus a virulence factor that interacts with lipid rafts and contributes to pathogen survival [6].
  • Cellular prion protein promotes Brucella infection into macrophages [7].
  • The nature of the Brucella HF-I-regulated genes that have been identified to date suggests that the corresponding gene products contribute to the remarkable capacity of the brucellae to resist the harsh environmental conditions they encounter during their prolonged residence in the phagosomal compartment [8].
  • Structural comparison of pVirB8(AT) with Brucella suis VirB8 confirms that the monomers have a similar fold [9].
  • Brucella coopts the small GTPase Sar1 for intracellular replication [10].
 

Chemical compound and disease context of Brucella

  • We also found that lpsB mutants were sensitive to the cationic peptides melittin, polymyxin B, and poly-l-lysine, in a manner that paralleled that of Brucella abortus lipopolysaccharide mutants [11].
  • The patient was also unable to develop normal humoral or cellular reactivity to brucella antigen, keyhole limpet hemocyanin, or dinitrochlorobenzene [12].
  • Two chemicals, pyran copolymer and glucan, and one biological, Brucella abortus strain 456 ether extract, were shown to be strong stimulators of antitumor immunity [13].
  • Brucella abortus lipopolysaccharide is mitogenic for spleen cells of endotoxin-resistant C3H/HeJ mice [14].
  • The reversibility of the O-chain-antibody reaction was also demonstrated by showing a rapid depolarization of the labeled O-chain-antibody complex in the presence of unlabeled O-chain, suggesting that this displacement experiment could be exploited to quantify the Brucella polysaccharide antigen [15].
 

Biological context of Brucella

 

Anatomical context of Brucella

  • The present studies were designed to determine the possible immunoregulatory function of TSH on lymphocytes immunized with the T-independent antigen Brucella abortus-TNP (BA-TNP) and the cellular components involved in such function [20].
  • For the first time in phagocytes, we thus characterized a primordial virulence strategy of Brucella involving the host signaling pathway, a novel point of immune intervention of this virulent pathogen [21].
  • Our results show that T cell-depleted B cells precultured for 18 to 24 h with rabbit anti-Ig reagents are rendered unresponsive to challenge with either Ag, fluorescein coupled to Brucella abortus (FL-BA), or mitogen (LPS) [22].
  • Ultrastructural morphometric analysis of Brucella abortus-infected trophoblasts in experimental placentitis. Bacterial replication occurs in rough endoplasmic reticulum [23].
  • In this report we provide evidence, for the first time, that bacterial DNA in the context of heat-killed Brucella abortus (HKBA) engages TLR9 in dendritic cells (DC), resulting in a Th1-like cytokine response [24].
 

Gene context of Brucella

  • Heat-killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent pathways: TNF, unlike IL-12p40 secretion, is Toll-like receptor 2 dependent [25].
  • Brucella abortus S2308-infected IRF-1-/- mice were dead within 2 wk postinfection, while IRF-2-/- mice contained less splenic Brucella CFU than wild-type mice at the early stage of infection [26].
  • Infected ICSBP-/- mice maintained a plateau of splenic Brucella CFU throughout the infection [26].
  • They also support the possibility that in mice, NO favors the elimination of Brucella, providing that IFN-gamma and antibrucella antibodies are present, i.e., following expression of acquired immunity [27].
  • The intracellular, gram-negative pathogen Brucella abortus establishes chronic infections in host macrophages while downregulating cytokines such as tumor necrosis factor alpha (TNF-alpha) [28].
 

Analytical, diagnostic and therapeutic context of Brucella

References

  1. Further observations on the inhibition of tumor growth by Corynebacterium parvum with cyclophosphamide. V. Comparison of the effects of tilorone hydrochloride, levamisole, methanol-soluble fraction of Mycobacterium butyricum, BCG, and a nonviable aqueous ether extract of Brucella abortus preparation in treatment of mice with tumors. Fisher, B., Linta, J., Hanlon, J., Saffer, E. J. Natl. Cancer Inst. (1978) [Pubmed]
  2. Genetic bias in immune responses to a cassette shared by different microorganisms in patients with rheumatoid arthritis. La Cava, A., Nelson, J.L., Ollier, W.E., MacGregor, A., Keystone, E.C., Thorne, J.C., Scavulli, J.F., Berry, C.C., Carson, D.A., Albani, S. J. Clin. Invest. (1997) [Pubmed]
  3. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Terradot, L., Bayliss, R., Oomen, C., Leonard, G.A., Baron, C., Waksman, G. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. Brucella species release a specific, protease-sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells. Caron, E., Gross, A., Liautard, J.P., Dornand, J. J. Immunol. (1996) [Pubmed]
  5. Brucella abortus conjugated with a peptide derived from the V3 loop of human immunodeficiency virus (HIV) type 1 induces HIV-specific cytotoxic T-cell responses in normal and in CD4+ cell-depleted BALB/c mice. Lapham, C., Golding, B., Inman, J., Blackburn, R., Manischewitz, J., Highet, P., Golding, H. J. Virol. (1996) [Pubmed]
  6. Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Arellano-Reynoso, B., Lapaque, N., Salcedo, S., Briones, G., Ciocchini, A.E., Ugalde, R., Moreno, E., Moriyón, I., Gorvel, J.P. Nat. Immunol. (2005) [Pubmed]
  7. Cellular prion protein promotes Brucella infection into macrophages. Watarai, M., Kim, S., Erdenebaatar, J., Makino, S., Horiuchi, M., Shirahata, T., Sakaguchi, S., Katamine, S. J. Exp. Med. (2003) [Pubmed]
  8. Brucella stationary-phase gene expression and virulence. Roop, R.M., Gee, J.M., Robertson, G.T., Richardson, J.M., Ng, W.L., Winkler, M.E. Annu. Rev. Microbiol. (2003) [Pubmed]
  9. Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Bailey, S., Ward, D., Middleton, R., Grossmann, J.G., Zambryski, P.C. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  10. Brucella coopts the small GTPase Sar1 for intracellular replication. Celli, J., Salcedo, S.P., Gorvel, J.P. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  11. Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core. Campbell, G.R., Reuhs, B.L., Walker, G.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  12. Long-term remission from acute myelogenous leukemia after bone marrow transplantation and recovery from acute graft-versus-host reaction and prolonged immunoincompetence. Bleyer, W.A., Blaese, R.M., Bujak, J.S., Herzig, G.P., Graw, R.G. Blood (1975) [Pubmed]
  13. Chemical and biological adjuvants capable of potentiating tumor cell vaccine. Chirigos, M.A., Stylos, W.A., Schultz, R.M., Fullen, J.R. Cancer Res. (1978) [Pubmed]
  14. Brucella abortus lipopolysaccharide is mitogenic for spleen cells of endotoxin-resistant C3H/HeJ mice. Moreno, E., Berman, D.T. J. Immunol. (1979) [Pubmed]
  15. Binding of the Brucella abortus lipopolysaccharide O-chain fragment to a monoclonal antibody. Quantitative analysis by fluorescence quenching and polarization. Lin, M., Nielsen, K. J. Biol. Chem. (1997) [Pubmed]
  16. The Brucella suis virB operon is induced intracellularly in macrophages. Boschiroli, M.L., Ouahrani-Bettache, S., Foulongne, V., Michaux-Charachon, S., Bourg, G., Allardet-Servent, A., Cazevieille, C., Liautard, J.P., Ramuz, M., O'Callaghan, D. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  17. Thyrotropin: an endogenous regulator of the in vitro immune response. Kruger, T.E., Smith, L.R., Harbour, D.V., Blalock, J.E. J. Immunol. (1989) [Pubmed]
  18. Brucella lipopolysaccharide acts as a virulence factor. Lapaque, N., Moriyon, I., Moreno, E., Gorvel, J.P. Curr. Opin. Microbiol. (2005) [Pubmed]
  19. Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family. Braibant, M., Guilloteau, L., Zygmunt, M.S. Antimicrob. Agents Chemother. (2002) [Pubmed]
  20. Cellular requirements for thyrotropin enhancement of in vitro antibody production. Kruger, T.E., Blalock, J.E. J. Immunol. (1986) [Pubmed]
  21. Subversion and utilization of the host cell cyclic adenosine 5'-monophosphate/protein kinase A pathway by Brucella during macrophage infection. Gross, A., Bouaboula, M., Casellas, P., Liautard, J.P., Dornand, J. J. Immunol. (2003) [Pubmed]
  22. A polyclonal model for B cell tolerance. I. Fc-dependent and Fc-independent induction of nonresponsiveness by pretreatment of normal splenic B cells with anti-Ig. Warner, G.L., Scott, D.W. J. Immunol. (1991) [Pubmed]
  23. Ultrastructural morphometric analysis of Brucella abortus-infected trophoblasts in experimental placentitis. Bacterial replication occurs in rough endoplasmic reticulum. Anderson, T.D., Cheville, N.F. Am. J. Pathol. (1986) [Pubmed]
  24. Th1-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. Huang, L.Y., Ishii, K.J., Akira, S., Aliberti, J., Golding, B. J. Immunol. (2005) [Pubmed]
  25. Heat-killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent pathways: TNF, unlike IL-12p40 secretion, is Toll-like receptor 2 dependent. Huang, L.Y., Aliberti, J., Leifer, C.A., Segal, D.M., Sher, A., Golenbock, D.T., Golding, B. J. Immunol. (2003) [Pubmed]
  26. Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis. Ko, J., Gendron-Fitzpatrick, A., Splitter, G.A. J. Immunol. (2002) [Pubmed]
  27. Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Gross, A., Spiesser, S., Terraza, A., Rouot, B., Caron, E., Dornand, J. Infect. Immun. (1998) [Pubmed]
  28. Rough lipopolysaccharide from Brucella abortus and Escherichia coli differentially activates the same mitogen-activated protein kinase signaling pathways for tumor necrosis factor alpha in RAW 264.7 macrophage-like cells. Jarvis, B.W., Harris, T.H., Qureshi, N., Splitter, G.A. Infect. Immun. (2002) [Pubmed]
  29. Comparison of immune responses and resistance to brucellosis in mice vaccinated with Brucella abortus 19 or RB51. Stevens, M.G., Olsen, S.C., Pugh, G.W., Brees, D. Infect. Immun. (1995) [Pubmed]
  30. Immunological response to the Brucella abortus GroEL homolog. Lin, J., Adams, L.G., Ficht, T.A. Infect. Immun. (1996) [Pubmed]
  31. Sodium dodecyl sulfate- and salt-extracted antigens from various Brucella species induce proliferation of bovine lymphocytes. Brooks-Worrell, B.M., Splitter, G.A. Infect. Immun. (1992) [Pubmed]
  32. Identification and characterization of a Brucella abortus ATP-binding cassette transporter homolog to Rhizobium meliloti ExsA and its role in virulence and protection in mice. Rosinha, G.M., Freitas, D.A., Miyoshi, A., Azevedo, V., Campos, E., Cravero, S.L., Rossetti, O., Splitter, G., Oliveira, S.C. Infect. Immun. (2002) [Pubmed]
  33. Molecular cloning and characterization of cgt, the Brucella abortus cyclic beta-1,2-glucan transporter gene, and its role in virulence. Roset, M.S., Ciocchini, A.E., Ugalde, R.A., Iñón de Iannino, N. Infect. Immun. (2004) [Pubmed]
 
WikiGenes - Universities