The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterization of the ArsRS Regulon of Helicobacter pylori, Involved in Acid Adaptation.

The human gastric pathogen Helicobacter pylori is extremely well adapted to the highly acidic conditions encountered in the stomach. The pronounced acid resistance of H. pylori relies mainly on the ammonia-producing enzyme urease; however, urease-independent mechanisms are likely to contribute to acid adaptation. Acid-responsive gene regulation is mediated at least in part by the ArsRS two-component system consisting of the essential OmpR-like response regulator ArsR and the nonessential cognate histidine kinase ArsS, whose autophosphorylation is triggered in response to low pH. In this study, by global transcriptional profiling of an ArsS-deficient H. pylori mutant grown at pH 5.0, we define the ArsR approximately P-dependent regulon consisting of 109 genes, including the urease gene cluster, the genes encoding the aliphatic amidases AmiE and AmiF, and the rocF gene encoding arginase. We show that ArsR approximately P controls the acid-induced transcription of amiE and amiF by binding to extended regions located upstream of the -10 box of the respective promoters. In contrast, transcription of rocF is repressed by ArsR approximately P at neutral, acidic, and mildly alkaline pH via high-affinity binding of the response regulator to a site overlapping the promoter of the rocF gene.[1]


  1. Characterization of the ArsRS Regulon of Helicobacter pylori, Involved in Acid Adaptation. Pflock, M., Finsterer, N., Joseph, B., Mollenkopf, H., Meyer, T.F., Beier, D. J. Bacteriol. (2006) [Pubmed]
WikiGenes - Universities