The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Parathyroid growth and suppression in renal failure.

In advanced uremia, parathyroid hormone (PTH) levels should be controlled at a moderately elevated level in order to promote normal bone turnover. As such, a certain degree of parathyroid hyperplasia has to be accepted. Uremia is associated with parathyroid growth. In experimental studies, proliferation of the parathyroid cells is induced by uremia and further promoted by hypocalcemia, phosphorus retention, and vitamin D deficiency. On the other hand, parathyroid cell proliferation might be arrested by treatment with a low-phosphate diet, vitamin D analogs, or calcimimetics. When established, parathyroid hyperplasia is poorly reversible. There exists no convincing evidence of programmed parathyroid cell death or apoptosis in hyperplastic parathyroid tissue or of involution of parathyroid hyperplasia. However, even considerable parathyroid hyperplasia can be controlled when the functional demand for increased PTH levels is removed by normalization of kidney function. Today, secondary hyperparathyroidism can be controlled in patients with long-term uremia in whom considerable parathyroid hyperplasia is to be expected. PTH levels can be suppressed in most uremic patients and this suppression can be maintained by continuous treatment with phosphate binders, vitamin D analogs, or calcimimetics. Thus modern therapy permits controlled development of parathyroid growth. When nonsuppressible secondary hyperparathyroidism is present, nodular hyperplasia with suppressed expression of the calcium-sensing receptor (CaR) and vitamin D receptor ( VDR) has been found in most cases. An altered expression of some autocrine/paracrine factors has been demonstrated in the nodules. The altered quality of the parathyroid mass, and not only the increased parathyroid mass per se, might be responsible for uncontrollable hyperparathyroidism in uremia and after kidney transplantation.[1]

References

  1. Parathyroid growth and suppression in renal failure. Lewin, E., Huan, J., Olgaard, K. Seminars in dialysis. (2006) [Pubmed]
 
WikiGenes - Universities