The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mammary gland tissue targeted overexpression of human protease-activated receptor 1 reveals a novel link to beta-catenin stabilization.

Protease-activated receptor 1 (PAR1) is emerging with distinct assignments in tumor biology. We show that tissue targeted overexpression of hPar1 in mice mammary glands results in precocious hyperplasia, characterized by a dense network of ductal side branching and accelerated proliferation. These glands exhibit increased levels of wnt-4 and wnt-7b and a striking beta-catenin stabilization. Nuclear localization of beta-catenin is observed in hPar1 transgenic mouse tissue sections but not in the wild-type, age-matched counterparts. PAR1 induces beta-catenin nuclear localization also in established epithelial tumor cell lines of intact beta-catenin system (transformed on the background of mismatch repair system; RKO cells). We propose hereby that PAR1- mediated beta-catenin stabilization is taking place primarily via the increase of Wnt expression. Enforced expression of a specific Wnt antagonist family member, secreted frizzled receptor protein 5 (SFRP5), efficiently inhibited PAR1- induced beta-catenin stabilization. Likewise, application of either SFRP2 or SFRP5 on epithelial tumor cells completely abrogated PAR1- induced beta-catenin nuclear accumulation. This takes place most likely via inhibition of Wnt signaling at the level of cell surface (forming a neutralizing complex of "Receptors-SFRP-Wnt"). Furthermore, depletion of hPar1 by small interfering RNA (siRNA) vectors markedly inhibited PAR1- induced Wnt-4. The striking stabilization of beta-catenin, inhibited by SFRPs on one hand and Wnt-4 silencing by hPar1 siRNA on the other hand, points to a novel role of hPar1 in Wnt-mediated beta-catenin stabilization. This link between PAR1 and beta-catenin may bear substantial implications both in developmental and tumor progression processes.[1]


  1. Mammary gland tissue targeted overexpression of human protease-activated receptor 1 reveals a novel link to beta-catenin stabilization. Yin, Y.J., Katz, V., Salah, Z., Maoz, M., Cohen, I., Uziely, B., Turm, H., Grisaru-Granovsky, S., Suzuki, H., Bar-Shavit, R. Cancer Res. (2006) [Pubmed]
WikiGenes - Universities