The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Biocatalytic synthesis of butein and sulfuretin by Aspergillus alliaceus.

Aspergillus alliaceus UI315 was examined for its potential to catalyze biotransformation reactions of chalcones that mimic plant biosynthetic processes. 3-(4' '-Hydroxyphenyl)-1-(2',4'-dihydroxyphenyl)propenone (4,2',4'-trihydroxychalcone, isoliquiritigein) (1) was efficiently transformed to two major metabolites that were isolated chromatographically and identified by spectroscopic methods as 3-(3' ',4' '-dihydroxyphenyl)-1-(2',4'-dihydroxyphenyl)propenone (butein) (7) and 2-[(3,4-dihydroxyphenyl)methylene]-6-hydroxy-3(2H)benzofuranone (7,3',4'-trihydroxyaurone, sulfuretin) (10). Inhibition experiments suggested that initial C-3 hydroxylation of 1 to 7 was catalyzed by a cytochrome P450 enzyme system. A second A. alliaceus enzyme, partially purified and identified as a catechol oxidase, catalyzed the oxidation of the catechol butein (7) likely through an ortho-quinone (8) that cyclized to the aurone product 10. This work showed that A. alliaceus UI315 contains oxidative enzyme systems capable of converting phenolic chalcones such as 1 into aurones such as 10 in a process that mimics plant biosynthetic pathways.[1]

References

  1. Biocatalytic synthesis of butein and sulfuretin by Aspergillus alliaceus. Sanchez-Gonzalez, M., Rosazza, J.P. J. Agric. Food Chem. (2006) [Pubmed]
 
WikiGenes - Universities