The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The hydroxylation of phenylalanine and tyrosine by tyrosine hydroxylase from cultured pheochromocytoma cells.

Pheochromocytoma tyrosine hydroxylase was reported to have unusual catalytic properties, which might be unique to the tumor enzyme (Dix, T. A., Kuhn, D. M., and Benkovic, S. J. (1987) Biochemistry 24, 3354-3361). Two such properties, namely the apparent inability to hydroxylate phenylalanine and an unprecedented reactivity with hydrogen peroxide were investigated further in the present study. Tyrosine hydroxylase was purified to apparent homogeneity from cultured pheochromocytoma PC12 cells. The purified tumor enzyme was entirely dependent on tetrahydrobiopterin (BH4) for the hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine and hydrogen peroxide could not substitute for the natural cofactor. Indeed, in the presence of BH4, increasing concentrations of hydrogen peroxide completely inhibited enzyme activity. The PC12 hydroxylase exhibited typical kinetics of tyrosine hydroxylation exhibited typical kinetics of tyrosine hydroxylation, both as a function of tyrosine (S0.5 Tyr = 15 microM) and BH4 (apparent Km BH4 = 210 microM). In addition, the enzyme catalyzed the hydroxylation of substantial amounts of phenylalanine to tyrosine and 3,4-dihydroxyphenylalanine (apparent Km Phe = 100 microM). Phenylalanine did not inhibit the enzyme in the concentrations tested, whereas tyrosine showed typical substrate inhibition at concentrations greater than or equal to 50 microM. At higher substrate concentrations, the rate of phenylalanine hydroxylation was equal to or exceeded that of tyrosine. Essentially identical results were obtained with purified tyrosine hydroxylase from pheochromocytoma PC18 cells. The data suggest that the tumor enzyme has the same substrate specificity and sensitivity to hydrogen peroxide as tyrosine hydroxylase from other tissues.[1]

References

 
WikiGenes - Universities