The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Oxidized ATP protection against anthrax lethal toxin.

Bacillus anthracis lethal toxin (LT) induces rapid lysis (<90 min) of murine macrophages from certain inbred strains. The mechanism for LT-induced cytolysis is currently unknown. We hypothesized that the ATP-activated macrophage P2X7 receptors implicated in nucleotide-mediated macrophage lysis could play a role in LT-mediated cytolysis and discovered that a potent P2X7 antagonist, oxidized ATP (o-ATP), protects macrophages against LT. Other P2X7 receptor antagonists, however, had no effect on LT function, while oxidized nucleotides, o-ADP, o-GTP, and o-ITP, which did not act as receptor ligands, provided protection. Cleavage of the LT substrates, the mitogen-activated protein kinases, was inhibited by o-ATP in RAW274.6 macrophages and CHO cells. We investigated the various steps in the intoxication pathway and found that binding of the protective-antigen (PA) component of LT to cells and the enzymatic proteolytic ability of the lethal factor (LF) component of LT were unaffected by o-ATP. Instead, the drug inhibited formation of the sodium dodecyl sulfate-resistant PA oligomer, which occurs in acidified endosomes, but did not prevent cell surface PA oligomerization, as evidenced by binding and translocation of LF to a protease-resistant intracellular location. We found that o-ATP also protected cells from anthrax edema toxin and diphtheria toxin, which also require an acidic environment for escape from endosomes. Confocal microscopy using pH-sensitive fluorescent dyes showed that o-ATP increased endosomal pH. Finally, BALB/cJ mice injected with o-ATP and LT were completely protected against lethality.[1]

References

  1. Oxidized ATP protection against anthrax lethal toxin. Moayeri, M., Wickliffe, K.E., Wiggins, J.F., Leppla, S.H. Infect. Immun. (2006) [Pubmed]
 
WikiGenes - Universities