The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2.

A cDNA coding a new H+/organic cation antiporter, human kidney-specific multidrug and toxin extrusion 2 (hMATE2-K), has been isolated from the human kidney. The hMATE2-K cDNA had an open reading frame that encodes a 566-amino acid protein, which shows 94, 82, 52, and 52% identity with the hMATE2, hMATE2-B, hMATE1, and rat MATE1, respectively. Reverse transcriptase-PCR revealed that hMATE2-K mRNA but not hMATE2 was expressed predominantly in the kidney, and hMATE2-B was ubiquitously found in all tissues examined except the kidney. The immunohistochemical analyses revealed that the hMATE2-K as well as the hMATE1 was localized at the brush border membranes of the proximal tubules. HEK293 cells that were transiently transfected with the hMATE2-K cDNA but not hMATE2-B exhibited the H+ gradient-dependent antiport of tetraethylammonium (TEA). Transfection of hMATE2-B had no affect on the hMATE2-K-mediated transport of TEA. hMATE2-K also transported cimetidine, 1-methyl-4-phenylpyridinium ( MPP), procainamide, metformin, and N1-methylnicotinamide. Kinetic analyses demonstrated that the Michaelis-Menten constants for the hMATE2-K-mediated transport of TEA, MPP, cimetidine, metformin, and procainamide were 0.83 mM, 93.5 microM, 0.37 mM, 1.05 mM, and 4.10 mM, respectively. Ammonium chloride-induced intracellular acidification significantly stimulated the hMATE2-K-dependent transport of organic cations such as TEA, MPP, procainamide, metformin, N1-methylnicotinamide, creatinine, guanidine, quinidine, quinine, thiamine, and verapamil. These results indicate that hMATE2-K is a new human kidney-specific H+/organic cation antiporter that is responsible for the tubular secretion of cationic drugs across the brush border membranes.[1]

References

  1. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. Masuda, S., Terada, T., Yonezawa, A., Tanihara, Y., Kishimoto, K., Katsura, T., Ogawa, O., Inui, K. J. Am. Soc. Nephrol. (2006) [Pubmed]
 
WikiGenes - Universities