The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential potencies of effector genes in adult Drosophila.

The GAL4/UAS gene expression system in Drosophila has been crucial in revealing the behavioral significance of neural circuits. Transgene products that block neurotransmitter release and induce cell death have been proved to inhibit neural function powerfully. Here we compare the action of the five effector genes shibire(ts1), Tetanus toxin light chain (TNT), reaper, Diphtheria toxin A-chain (DTA), and inwardly rectifying potassium channel (Kir2.1) and show differences in their efficiency depending on the target cells and the timing of induction. Specifically, effectors blocking neuronal transmission or excitability led to adult-induced paralysis more efficiently than those causing cell ablation. We contrasted these differential potencies in adult to their actions during development. Furthermore, we induced TNT expression in the adult mushroom bodies. In contrast to the successful impairment in short-term olfactory memory by shibire(ts1), adult TNT expression in the same set of cells did not lead to any obvious impairment. Altogether, the efficiency of effector genes depends on properties of the targeted neurons. Thus, we conclude that the selection of the appropriate effector gene is critical for evaluating the function of neural circuits.[1]

References

  1. Differential potencies of effector genes in adult Drosophila. Thum, A.S., Knapek, S., Rister, J., Dierichs-Schmitt, E., Heisenberg, M., Tanimoto, H. J. Comp. Neurol. (2006) [Pubmed]
 
WikiGenes - Universities