The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Critical role of 5'-AMP-activated protein kinase in the stimulation of glucose transport in response to inhibition of oxidative phosphorylation.

5'-AMP-activated protein kinase ( AMPK) functions as an energy sensor to provide metabolic adaptation under conditions of ATP depletion, such as hypoxia and inhibition of oxidative phosphorylation. Whether activation of AMPK is critical for stimulation of glucose transport in response to inhibition of oxidative phosphorylation is unknown. Here we found that treatment of Glut1- expressing Clone 9 cells with sodium azide (5 mM for 2 h) or the AMPK activator 5'-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR, 2 mM for 2 h) stimulated the rate of glucose transport by two- to fourfold. Use of small interference RNA (siRNA) directed against AMPKalpha(1) or AMPKalpha(1) + AMPKalpha(2) (total AMPKalpha) resulted in a significant inhibition of the glucose transport response and the content of phosphorylated AMPKalpha(1) + phosphorylated AMPKalpha(2) (total p-AMPKalpha) and phosphorylated acetyl-CoA carboxylase (p-ACC) in response to azide. Transfection with siRNA directed against AMPKalpha(2) did not affect the glucose transport response. The efficacy of transfection with siRNAs in reducing AMPK content was confirmed by Western blotting. Incubation of cells with compound C, an inhibitor of AMPK, abrogated the glucose transport response and abolished the increase in total p- AMPK in azide-treated or hypoxia-exposed cells. Simultaneous exposure to azide and AICAR did not augment the rate of transport in response to AICAR alone. There was no evidence of coimmunoprecipitation of total p-AMPKalpha with Glut1. However, LKB1 was associated with total p-AMPKalpha. We conclude that activation of AMPK plays both a sufficient and a necessary role in the stimulation of glucose transport in response to inhibition of oxidative phosphorylation.[1]

References

 
WikiGenes - Universities