The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Oxidative Phosphorylation

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Oxidative Phosphorylation


Psychiatry related information on Oxidative Phosphorylation


High impact information on Oxidative Phosphorylation


Chemical compound and disease context of Oxidative Phosphorylation


Biological context of Oxidative Phosphorylation


Anatomical context of Oxidative Phosphorylation


Associations of Oxidative Phosphorylation with chemical compounds


Gene context of Oxidative Phosphorylation


Analytical, diagnostic and therapeutic context of Oxidative Phosphorylation


  1. Energetics of acute pressure overload of the porcine right ventricle. In vivo 31P nuclear magnetic resonance. Schwartz, G.G., Steinman, S., Garcia, J., Greyson, C., Massie, B., Weiner, M.W. J. Clin. Invest. (1992) [Pubmed]
  2. Maternal inheritance and the evaluation of oxidative phosphorylation diseases. Shoffner, J.M. Lancet (1996) [Pubmed]
  3. Excess capacity of H(+)-ATPase and inverse respiratory control in Escherichia coli. Jensen, P.R., Westerhoff, H.V., Michelsen, O. EMBO J. (1993) [Pubmed]
  4. Restoration of oxidative phosphorylation by purified N,N'-dicyclohexylcarbodiimide-sensitive latent adenosinetriphosphatase from Mycobacterium phlei. Lee, S.H., Cohen, N.S., Brodie, A.F. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  5. Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive K+ channels. Loutzenhiser, R.D., Parker, M.J. Circ. Res. (1994) [Pubmed]
  6. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Konradi, C., Eaton, M., MacDonald, M.L., Walsh, J., Benes, F.M., Heckers, S. Arch. Gen. Psychiatry (2004) [Pubmed]
  7. Mitochondrial dysfunction in movement disorders. Schulz, J.B., Beal, M.F. Curr. Opin. Neurol. (1994) [Pubmed]
  8. pH is regulated differently by glucose in skeletal muscle from fed and starved rats: a study using 31P-NMR spectroscopy. Meynial-Denis, D., Mignon, M., Foucat, L., Bielicki, G., Ouali, A., Tassy, C., Renou, J.P., Grizard, J., Arnal, M. J. Nutr. (1998) [Pubmed]
  9. Biochemical and genetic identity of alpha-keto acid reductase and cytoplasmic malate dehydrogenase from human erythrocytes. Friedrich, C.A., Ferrell, R.E., Siciliano, M.J., Kitto, G.B. Ann. Hum. Genet. (1988) [Pubmed]
  10. Pathogenesis of decreased glucose turnover and oxidative phosphorylation in ischemic and trauma-induced dementia of the Alzheimer type. Meier-Ruge, W.A., Bertoni-Freddari, C. Ann. N. Y. Acad. Sci. (1997) [Pubmed]
  11. 50 years of biological research--from oxidative phosphorylation to energy requiring transport regulation. Kalckar, H.M. Annu. Rev. Biochem. (1991) [Pubmed]
  12. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., Houstis, N., Daly, M.J., Patterson, N., Mesirov, J.P., Golub, T.R., Tamayo, P., Spiegelman, B., Lander, E.S., Hirschhorn, J.N., Altshuler, D., Groop, L.C. Nat. Genet. (2003) [Pubmed]
  13. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Silva, J.P., Köhler, M., Graff, C., Oldfors, A., Magnuson, M.A., Berggren, P.O., Larsson, N.G. Nat. Genet. (2000) [Pubmed]
  14. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Li, K., Li, Y., Shelton, J.M., Richardson, J.A., Spencer, E., Chen, Z.J., Wang, X., Williams, R.S. Cell (2000) [Pubmed]
  15. Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Mobley, H.L., Rosen, B.P. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  16. Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat hearts. Owen, P., Dennis, S., Opie, L.H. Circ. Res. (1990) [Pubmed]
  17. A novel mitochondrial 12SrRNA point mutation in parkinsonism, deafness, and neuropathy. Thyagarajan, D., Bressman, S., Bruno, C., Przedborski, S., Shanske, S., Lynch, T., Fahn, S., DiMauro, S. Ann. Neurol. (2000) [Pubmed]
  18. Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? Evans, A.M., Mustard, K.J., Wyatt, C.N., Peers, C., Dipp, M., Kumar, P., Kinnear, N.P., Hardie, D.G. J. Biol. Chem. (2005) [Pubmed]
  19. Toxic injury from mercuric chloride in rat hepatocytes. Nieminen, A.L., Gores, G.J., Dawson, T.L., Herman, B., Lemasters, J.J. J. Biol. Chem. (1990) [Pubmed]
  20. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nishikawa, T., Edelstein, D., Du, X.L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M.A., Beebe, D., Oates, P.J., Hammes, H.P., Giardino, I., Brownlee, M. Nature (2000) [Pubmed]
  21. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Arch, J.R., Ainsworth, A.T., Cawthorne, M.A., Piercy, V., Sennitt, M.V., Thody, V.E., Wilson, C., Wilson, S. Nature (1984) [Pubmed]
  22. Mechanism of the diastolic dysfunction induced by glycolytic inhibition. Does adenosine triphosphate derived from glycolysis play a favored role in cellular Ca2+ homeostasis in ferret myocardium? Kusuoka, H., Marban, E. J. Clin. Invest. (1994) [Pubmed]
  23. Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins. Wiedemann, N., Urzica, E., Guiard, B., Müller, H., Lohaus, C., Meyer, H.E., Ryan, M.T., Meisinger, C., Mühlenhoff, U., Lill, R., Pfanner, N. EMBO J. (2006) [Pubmed]
  24. The mechanism of inhibition of Ran-dependent nuclear transport by cellular ATP depletion. Schwoebel, E.D., Ho, T.H., Moore, M.S. J. Cell Biol. (2002) [Pubmed]
  25. Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Lynch, R.M., Paul, R.J. Science (1983) [Pubmed]
  26. Pearson's marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. Rötig, A., Cormier, V., Blanche, S., Bonnefont, J.P., Ledeist, F., Romero, N., Schmitz, J., Rustin, P., Fischer, A., Saudubray, J.M. J. Clin. Invest. (1990) [Pubmed]
  27. Metabolic consequences of a novel missense mutation of the mtDNA CO I gene. Varlamov, D.A., Kudin, A.P., Vielhaber, S., Schröder, R., Sassen, R., Becker, A., Kunz, D., Haug, K., Rebstock, J., Heils, A., Elger, C.E., Kunz, W.S. Hum. Mol. Genet. (2002) [Pubmed]
  28. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Thierbach, R., Schulz, T.J., Isken, F., Voigt, A., Mietzner, B., Drewes, G., von Kleist-Retzow, J.C., Wiesner, R.J., Magnuson, M.A., Puccio, H., Pfeiffer, A.F., Steinberg, P., Ristow, M. Hum. Mol. Genet. (2005) [Pubmed]
  29. Accumulation of very long-chain fatty acids does not affect mitochondrial function in adrenoleukodystrophy protein deficiency. Oezen, I., Rossmanith, W., Forss-Petter, S., Kemp, S., Voigtländer, T., Moser-Thier, K., Wanders, R.J., Bittner, R.E., Berger, J. Hum. Mol. Genet. (2005) [Pubmed]
  30. Salicylate-induced injury of pyruvate-kinase-deficient erythrocytes. Glader, B.E. N. Engl. J. Med. (1976) [Pubmed]
  31. Myoglobin function in exercising skeletal muscle. Cole, R.P. Science (1982) [Pubmed]
  32. Enzymatic basis for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2. Simon, L.M., Robin, E.D., Phillips, J.R., Acevedo, J., Axline, S.G., Theodore, J. J. Clin. Invest. (1977) [Pubmed]
  33. Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo. Hesselink, M.K., Greenhaff, P.L., Constantin-Teodosiu, D., Hultman, E., Saris, W.H., Nieuwlaat, R., Schaart, G., Kornips, E., Schrauwen, P. J. Clin. Invest. (2003) [Pubmed]
  34. Hepatic mitochondrial function in ketogenic states. Diabetes, starvation, and after growth hormone administration. DiMarco, J.P., Hoppel, C. J. Clin. Invest. (1975) [Pubmed]
  35. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., Wallace, D.C., Epstein, C.J. Nat. Genet. (1995) [Pubmed]
  36. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Mootha, V.K., Handschin, C., Arlow, D., Xie, X., St Pierre, J., Sihag, S., Yang, W., Altshuler, D., Puigserver, P., Patterson, N., Willy, P.J., Schulman, I.G., Heyman, R.A., Lander, E.S., Spiegelman, B.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  37. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Browne, S.E., Bowling, A.C., MacGarvey, U., Baik, M.J., Berger, S.C., Muqit, M.M., Bird, E.D., Beal, M.F. Ann. Neurol. (1997) [Pubmed]
  38. Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy. Lodi, R., Tonon, C., Valentino, M.L., Iotti, S., Clementi, V., Malucelli, E., Barboni, P., Longanesi, L., Schimpf, S., Wissinger, B., Baruzzi, A., Barbiroli, B., Carelli, V. Ann. Neurol. (2004) [Pubmed]
  39. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. Haurie, V., Perrot, M., Mini, T., Jenö, P., Sagliocco, F., Boucherie, H. J. Biol. Chem. (2001) [Pubmed]
  40. Postischemic administration of succinate reverses the impairment of oxidative phosphorylation after cardiac ischemia and reperfusion injury. Cairns, C.B., Ferroggiaro, A.A., Walther, J.M., Harken, A.H., Banerjee, A. Circulation (1997) [Pubmed]
  41. Mitochondrial oxidative phosphorylation and intracellular glutathione compartmentation during rat liver regeneration. Vendemiale, G., Guerrieri, F., Grattagliano, I., Didonna, D., Muolo, L., Altomare, E. Hepatology (1995) [Pubmed]
  42. Mitochondrial damage: a possible mechanism of the "topical" phase of NSAID induced injury to the rat intestine. Somasundaram, S., Rafi, S., Hayllar, J., Sigthorsson, G., Jacob, M., Price, A.B., Macpherson, A., Mahmod, T., Scott, D., Wrigglesworth, J.M., Bjarnason, I. Gut (1997) [Pubmed]
  43. The role of energy in hyperthermia-induced mammalian cell inactivation: a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation. Haveman, J., Hahn, G.M. J. Cell. Physiol. (1981) [Pubmed]
  44. Metabolic consequences of the cytochrome c oxidase deficiency in brain of copper-deficient Mo(vbr) mice. Kunz, W.S., Kuznetsov, A.V., Clark, J.F., Tracey, I., Elger, C.E. J. Neurochem. (1999) [Pubmed]
WikiGenes - Universities