The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

MARCO Mediates Silica Uptake and Toxicity in Alveolar Macrophages from C57BL/6 Mice.

Scavenger receptors (SR), on the surface of the macrophage, appear to be responsible for silica uptake and cell death signaling in the macrophage. The purpose of this study was to isolate which SRs (macrophage receptor with collagenous structure (MARCO), CD204, or CD36) were involved using a variety of SR single and double null mice. The findings indicated that MARCO was the critical SR involved in silica uptake and cytotoxicity in the primary alveolar macrophages (AM) from C57BL/6 mice, as there was no particle uptake or cell death in the absence of this SR. The level of MARCO expression on AM changed significantly with the absence of other SR, and silica uptake was proportional to cell surface MARCO expression. In addition, silica uptake and cytotoxicity were completely blocked by an anti-mouse MARCO antibody. Transfection of Chinese hamster ovary cells with human MARCO supported these conclusions, as silica particles bound to and initiated apoptosis in the MARCO-transfected cells. Strain differences with regard to SR distribution were also examined. There was a differential expression of these SR on AM from each strain, with MARCO dominant for C57BL/6, CD36 dominant on BALB/c, and all three SR expressed on 129/SvJ mice. Similar to the results with C57BL/6 AM, MARCO was involved with silica-induced cell death in the 129/SvJ strain. In contrast, BALB/c AM used an unidentified mechanism for silica uptake because the SR antibodies failed to block particle internalization. Taken together, these results indicate MARCO is the primary AM receptor interacting with silica, depending on mouse strain and level of constitutive expression.[1]

References

  1. MARCO Mediates Silica Uptake and Toxicity in Alveolar Macrophages from C57BL/6 Mice. Hamilton, R.F., Thakur, S.A., Mayfair, J.K., Holian, A. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities