The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CD36  -  CD36 molecule (thrombospondin receptor)

Homo sapiens

Synonyms: BDPLT10, CHDS7, FAT, Fatty acid translocase, GP3B, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CD36

  • In vitro, CD36 is the most frequent target of strains from patients with mild as well as severe P. falciparum malaria, but is expressed at low levels on the cerebral microvasculature and therefore seems unlikely to be involved in the evolution of cerebral disease [1].
  • Identification of a CD36-related thrombospondin 1-binding domain in HIV-1 envelope glycoprotein gp120: relationship to HIV-1-specific inhibitory factors in human saliva [2].
  • CD36 polymorphism is associated with protection from cerebral malaria [3].
  • Coprecipitation of CD36, CD9, and alpha6beta1 was also observed on platelets from a patient with Glanzmann thrombasthenia, indicating that alphaII(b)beta3 is not required for the other proteins to associate [4].
  • TSP1, peptides, and a recombinant fragment from the type I repeats, but not peptides that bind CD36 or CD47, inhibit the proliferation of A2058 melanoma cells [5].

Psychiatry related information on CD36


High impact information on CD36


Chemical compound and disease context of CD36


Biological context of CD36


Anatomical context of CD36

  • In a type I deficient subject, both platelet and monocyte CD36 cDNA showed only T478 form [18].
  • Our findings indicate newly defined roles for TSP and CD36 in phagocytic clearance of senescent neutrophils, which may limit inflammatory tissue injury and promote resolution [17].
  • Additional molecules known to bind CD36, including the IgM anti-CD36 antibody SM, oxidized (but not unoxidized) low density lipoprotein, and human collagen 1, mimicked TSP-1 by inhibiting the migration of human microvascular endothelial cells [20].
  • CD36 associates with CD9 and integrins on human blood platelets [4].
  • The three-color flow cytometry analysis showed that CD34+ cells stained with antibodies to CD61 and CD36 or CD51 can be divided into subsets that may represent progenitor cells committed to the erythroid and/or megakaryocytic lineage [21].

Associations of CD36 with chemical compounds

  • Chk and Lyn, but not Csk and c-Src, co-fractionated in the higher density lysate fractions of resting platelets, with Chk being found to localize close to CD36 (membrane glycoprotein IV)-anchored Lyn [19].
  • Translocation of the Csk homologous kinase (Chk/Hyl) controls activity of CD36-anchored Lyn tyrosine kinase in thrombin-stimulated platelets [19].
  • In clone C5 and strain MC, these activities resided on different tryptic fragments, but a single tryptic fragment from clone ItG-ICAM bound to both CD36 and TSP [22].
  • Platelets were solubilized in 1% Triton X-100, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), Brij 96, or Brij 99, and the proteins that coprecipitated with CD36 were identified by peptide mass spectrometry and Western blotting [4].
  • Formation of this novel class of oxidized PC species contributes to CD36-mediated recognition of LDL oxidized by MPO and other biologically relevant mechanisms [23].
  • CD36 ligands blocked myristate-stimulated cGMP accumulation in proportion to their ability to inhibit myristate uptake [24].
  • Insulin reduced CD36 ubiquitination, increased CD36 protein, and inhibited the opposite effects of fatty acids on both parameters [25].

Physical interactions of CD36

  • Thrombospondin binds normally to glycoprotein IIIb deficient platelets [26].
  • Only CD9 is coprecipitated with CD36 from platelets that were solubilized in Brij 96 [4].
  • The distinct signaling pathways underlying insulin-induced and contraction-induced FAT/CD36 translocation will be discussed and a comparison will be made with the well-defined glucose transport system involving the glucose transporter GLUT4 [27].
  • Our data are not consistent with a role for binding to CD36 in the development of severe disease but show an association between the degree of binding to ICAM-1 and clinical illness in nonanemic patients [28].
  • Additionally, CD36 may also bind the extracellular matrix proteins thrombospondin and collagen [29].

Co-localisations of CD36


Regulatory relationships of CD36


Other interactions of CD36

  • Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not [35].
  • Cell surface antigens associated with myeloid differentiation were found on blasts from 88.1% of patients (CD15, 44%; CD33, 65%; CD36, 53%; glycoprotein Ib, 9.3%) [36].
  • Antibodies to putative macrophage PS receptors (CD36, CD68, and CD14) did not inhibit uptake of the complex [37].
  • These data suggest that beta2GPI can bind cells that fail to maintain membrane lipid asymmetry and generate a specific bridging moiety that is recognized for clearance by a phagocyte receptor that is distinct from CD36, CD68, and CD14 [37].
  • All tumors were composed predominantly of spindle cells that expressed endothelium-associated antigens, CD34 and CD36 (factor VIII-related antigen was expressed by considerably fewer numbers of tumor cells) [38].
  • The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions [39].

Analytical, diagnostic and therapeutic context of CD36


  1. PECAM-1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes. Treutiger, C.J., Heddini, A., Fernandez, V., Muller, W.A., Wahlgren, M. Nat. Med. (1997) [Pubmed]
  2. Identification of a CD36-related thrombospondin 1-binding domain in HIV-1 envelope glycoprotein gp120: relationship to HIV-1-specific inhibitory factors in human saliva. Crombie, R., Silverstein, R.L., MacLow, C., Pearce, S.F., Nachman, R.L., Laurence, J. J. Exp. Med. (1998) [Pubmed]
  3. CD36 polymorphism is associated with protection from cerebral malaria. Omi, K., Ohashi, J., Patarapotikul, J., Hananantachai, H., Naka, I., Looareesuwan, S., Tokunaga, K. Am. J. Hum. Genet. (2003) [Pubmed]
  4. CD36 associates with CD9 and integrins on human blood platelets. Miao, W.M., Vasile, E., Lane, W.S., Lawler, J. Blood (2001) [Pubmed]
  5. Differential roles of protein kinase C and pertussis toxin-sensitive G-binding proteins in modulation of melanoma cell proliferation and motility by thrombospondin 1. Guo, N., Zabrenetzky, V.S., Chandrasekaran, L., Sipes, J.M., Lawler, J., Krutzsch, H.C., Roberts, D.D. Cancer Res. (1998) [Pubmed]
  6. CD36 overexpression in human brain correlates with beta-amyloid deposition but not with Alzheimer's disease. Ricciarelli, R., D'Abramo, C., Zingg, J.M., Giliberto, L., Markesbery, W., Azzi, A., Marinari, U.M., Pronzato, M.A., Tabaton, M. Free Radic. Biol. Med. (2004) [Pubmed]
  7. Relation of the CD36 gene A52C polymorphism to the risk of colorectal cancer among Japanese, with reference to with the aldehyde dehydrogenase 2 gene Glu487Lys polymorphism and drinking habit. Kuriki, K., Hamajima, N., Chiba, H., Kanemitsu, Y., Hirai, T., Kato, T., Saito, T., Matsuo, K., Koike, K., Tokudome, S., Tajima, K. Asian Pac. J. Cancer Prev. (2005) [Pubmed]
  8. Circulating activated endothelial cells in sickle cell anemia. Solovey, A., Lin, Y., Browne, P., Choong, S., Wayner, E., Hebbel, R.P. N. Engl. J. Med. (1997) [Pubmed]
  9. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Baruch, D.I., Pasloske, B.L., Singh, H.B., Bi, X., Ma, X.C., Feldman, M., Taraschi, T.F., Howard, R.J. Cell (1995) [Pubmed]
  10. CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Oquendo, P., Hundt, E., Lawler, J., Seed, B. Cell (1989) [Pubmed]
  11. A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Griffin, E., Re, A., Hamel, N., Fu, C., Bush, H., McCaffrey, T., Asch, A.S. Nat. Med. (2001) [Pubmed]
  12. CD36 deficiency induced by antiretroviral therapy. Serghides, L., Nathoo, S., Walmsley, S., Kain, K.C. AIDS (2002) [Pubmed]
  13. Surface expression of fatty acid translocase (FAT/CD36) on platelets in myeloproliferative disorders and non-insulin dependent diabetes mellitus: effect on arachidonic acid uptake. Salah-Uddin, H., Gordon, M.J., Ford, I., Tandon, N.N., Greaves, M., Duttaroy, A.K. Mol. Cell. Biochem. (2002) [Pubmed]
  14. Estradiol down-regulates CD36 expression in human breast cancer cells. Uray, I.P., Liang, Y., Hyder, S.M. Cancer Lett. (2004) [Pubmed]
  15. Modulators of intraplatelet calcium concentration affect the binding of thrombospondin to blood platelets in healthy donors and patients with type 2 diabetes mellitus. Wieclawska, B., Rozalski, M., Trojanowski, Z., Watala, C. Eur. J. Haematol. (2001) [Pubmed]
  16. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. Bonen, A., Parolin, M.L., Steinberg, G.R., Calles-Escandon, J., Tandon, N.N., Glatz, J.F., Luiken, J.J., Heigenhauser, G.J., Dyck, D.J. FASEB J. (2004) [Pubmed]
  17. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. Savill, J., Hogg, N., Ren, Y., Haslett, C. J. Clin. Invest. (1992) [Pubmed]
  18. Molecular basis of CD36 deficiency. Evidence that a 478C-->T substitution (proline90-->serine) in CD36 cDNA accounts for CD36 deficiency. Kashiwagi, H., Tomiyama, Y., Honda, S., Kosugi, S., Shiraga, M., Nagao, N., Sekiguchi, S., Kanayama, Y., Kurata, Y., Matsuzawa, Y. J. Clin. Invest. (1995) [Pubmed]
  19. Translocation of the Csk homologous kinase (Chk/Hyl) controls activity of CD36-anchored Lyn tyrosine kinase in thrombin-stimulated platelets. Hirao, A., Hamaguchi, I., Suda, T., Yamaguchi, N. EMBO J. (1997) [Pubmed]
  20. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. Dawson, D.W., Pearce, S.F., Zhong, R., Silverstein, R.L., Frazier, W.A., Bouck, N.P. J. Cell Biol. (1997) [Pubmed]
  21. Phenotype analysis of hematopoietic CD34+ cell populations derived from human umbilical cord blood using flow cytometry and cDNA-polymerase chain reaction. Thoma, S.J., Lamping, C.P., Ziegler, B.L. Blood (1994) [Pubmed]
  22. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Baruch, D.I., Gormely, J.A., Ma, C., Howard, R.J., Pasloske, B.L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  23. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. Podrez, E.A., Poliakov, E., Shen, Z., Zhang, R., Deng, Y., Sun, M., Finton, P.J., Shan, L., Gugiu, B., Fox, P.L., Hoff, H.F., Salomon, R.G., Hazen, S.L. J. Biol. Chem. (2002) [Pubmed]
  24. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. Isenberg, J.S., Jia, Y., Fukuyama, J., Switzer, C.H., Wink, D.A., Roberts, D.D. J. Biol. Chem. (2007) [Pubmed]
  25. Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake. Smith, J., Su, X., El-Maghrabi, R., Stahl, P.D., Abumrad, N.A. J. Biol. Chem. (2008) [Pubmed]
  26. Thrombospondin binds normally to glycoprotein IIIb deficient platelets. Kehrel, B., Kronenberg, A., Schwippert, B., Niesing-Bresch, D., Niehues, U., Tschöpe, D., van de Loo, J., Clemetson, K.J. Biochem. Biophys. Res. Commun. (1991) [Pubmed]
  27. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Koonen, D.P., Glatz, J.F., Bonen, A., Luiken, J.J. Biochim. Biophys. Acta (2005) [Pubmed]
  28. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Newbold, C., Warn, P., Black, G., Berendt, A., Craig, A., Snow, B., Msobo, M., Peshu, N., Marsh, K. Am. J. Trop. Med. Hyg. (1997) [Pubmed]
  29. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. Swerlick, R.A., Lee, K.H., Wick, T.M., Lawley, T.J. J. Immunol. (1992) [Pubmed]
  30. Sarcolemmal FAT/CD36 in human skeletal muscle colocalizes with caveolin-3 and is more abundant in type 1 than in type 2 fibers. Vistisen, B., Roepstorff, K., Roepstorff, C., Bonen, A., van Deurs, B., Kiens, B. J. Lipid Res. (2004) [Pubmed]
  31. Identification of CD36 molecular features required for its in vitro angiostatic activity. Primo, L., Ferrandi, C., Roca, C., Marchiò, S., di Blasio, L., Alessio, M., Bussolino, F. FASEB J. (2005) [Pubmed]
  32. Retinoids potentiate peroxisome proliferator-activated receptor gamma action in differentiation, gene expression, and lipid metabolic processes in developing myeloid cells. Szanto, A., Nagy, L. Mol. Pharmacol. (2005) [Pubmed]
  33. Immunohistochemical properties of the endothelial cells in the human uterus during the menstrual cycle. Rees, M.C., Heryet, A.R., Bicknell, R. Hum. Reprod. (1993) [Pubmed]
  34. Thrombin-stimulated calcium mobilization is inhibited by thrombospondin via CD36. Enenstein, J., Gupta, K., Vercellotti, G.M., Hebbel, R.P. Exp. Cell Res. (1998) [Pubmed]
  35. Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Kehrel, B., Wierwille, S., Clemetson, K.J., Anders, O., Steiner, M., Knight, C.G., Farndale, R.W., Okuma, M., Barnes, M.J. Blood (1998) [Pubmed]
  36. Expression of lymphoid-associated cell surface antigens by childhood acute myeloid leukemia cells lacks prognostic significance. Smith, F.O., Lampkin, B.C., Versteeg, C., Flowers, D.A., Dinndorf, P.A., Buckley, J.D., Woods, W.G., Hammond, G.D., Bernstein, I.D. Blood (1992) [Pubmed]
  37. Characterization of phosphatidylserine-dependent beta2-glycoprotein I macrophage interactions. Implications for apoptotic cell clearance by phagocytes. Balasubramanian, K., Schroit, A.J. J. Biol. Chem. (1998) [Pubmed]
  38. Human immunodeficiency virus-associated oral Kaposi's sarcoma. A heterogeneous cell population dominated by spindle-shaped endothelial cells. Regezi, J.A., MacPhail, L.A., Daniels, T.E., DeSouza, Y.G., Greenspan, J.S., Greenspan, D. Am. J. Pathol. (1993) [Pubmed]
  39. Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: a potential target for new drugs for leprosy treatment. Mattos, K.A., Oliveira, V.C., Berrêdo-Pinho, M., Amaral, J.J., Antunes, L.C., Melo, R.C., Acosta, C.C., Moura, D.F., Olmo, R., Han, J., Rosa, P.S., Almeida, P.E., Finlay, B.B., Borchers, C.H., Sarno, E.N., Bozza, P.T., Atella, G.C., Pessolani, M.C. Cell. Microbiol. (2014) [Pubmed]
  40. Fatty acid translocase (FAT/CD36) is localized on insulin-containing granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Noushmehr, H., D'Amico, E., Farilla, L., Hui, H., Wawrowsky, K.A., Mlynarski, W., Doria, A., Abumrad, N.A., Perfetti, R. Diabetes (2005) [Pubmed]
  41. Macrophage recognition and phagocytosis of apoptotic fibroblasts is critically dependent on fibroblast-derived thrombospondin 1 and CD36. Moodley, Y., Rigby, P., Bundell, C., Bunt, S., Hayashi, H., Misso, N., McAnulty, R., Laurent, G., Scaffidi, A., Thompson, P., Knight, D. Am. J. Pathol. (2003) [Pubmed]
  42. Structural organization of the gene for human CD36 glycoprotein. Armesilla, A.L., Vega, M.A. J. Biol. Chem. (1994) [Pubmed]
WikiGenes - Universities