The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Specific binding of substance P aminoterminal heptapeptide [SP(1-7)] to mouse brain and spinal cord membranes.

Aminoterminal fragments of substance P ( SP) have been previously shown to produce effects distinct, and often opposite, from those produced by the C-terminal of SP. The present investigation was initiated to determine whether N-terminal fragments interact at binding sites distinct from the neurokinin-1 (NK-1) receptor where the C-terminal sequence of SP binds with high affinity, and distinct from mu-opiate receptors, where we have previously shown the N-terminal sequence of SP to interact. A tritium-labeled aminoterminal heptapeptide of SP, 3H-SP(1-7), was synthesized, purified, and used to characterize the binding of a variety of fragments of SP and opioids in the mouse brain and spinal cord membranes. Using the reduction of SP-induced caudally directed biting and scratching behaviors as an index of biological activity, 3H-SP(1-7) was shown to be equipotent to unlabeled SP(1-7). 3H-SP(1-7) was found to bind reversibly to a saturable population of sites. Scatchard analyses of concentration-dependent saturation of binding in the brain indicated a single population of noninteracting sites with a high affinity (Kd = 2.5 nM) and a low capacity (Bmax = 29.2 fmol/ mg protein). Kinetic analyses indicated an apparent dissociation equilibrium constant of 2.1 nM. Two populations of binding sites were observed in the spinal cord, one with a very high affinity (Kd = 0.03 nM) and low capacity (Bmax = 0.87 fmol/ mg protein), and the other with lower affinity (Kd = 5.4 nM) and intermediate capacity (Bmax = 19.6 fmol/ mg protein). Specific agonists for NK-1, NK-2, and NK-3 and delta opioid receptors, carboxyterminal fragments of SP, and a variety of other peptides did not compete at the 3H-SP(1-7) binding sites, but structurally related N-terminal peptides and (D-Ala2, NMe-Phe4, Gly-ol)-enkephalin (DAMGO) were active in displacing the ligand. The binding site for 3H-SP(1-7) appeared to be a membrane-bound complex whose specific binding was dependent on the integrity of both proteins and phospholipids. These studies are the first to characterize the binding sites for the SP N-terminal partial sequence of SP that can be generated by metabolism in vivo. The expanding body of evidence for distinct biological activities of N-terminal metabolites of SP, together with the current characterization of N-terminal binding, strongly support the existence of an N-terminal-directed SP receptor. The characteristics of SP(1-7) binding sites are consistent with those expected for an SP N-terminal receptor.[1]

References

 
WikiGenes - Universities