The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

5-Azacytidine inhibits the induction of transient TK-deficient cells by 5-bromodeoxyuridine. A novel hypothesis for the facilitation of hypermethylation by 5-bromodeoxyuridine.

This paper examines the mechanism by which 5-bromodeoxyuridine (BrdUrd) induces a high frequency of transient trifluorothymidine (F3TdR)-resistant variants in the TK6 human lymphoblast cell line (a TK +/- heterozygote). This phenomenon has previously been termed 'pseudomutation' (Liber et al., 1985). We now report that 5-azacytidine (5-AzaC), an inhibitor of DNA methylation, reverses BrdUrd-induced pseudomutation in a dose-dependent manner. The inhibition by 5-AzaC is highly specific and does not appear to involve nucleotide pool perturbations. 5-AzaC inhibits the pseudomutagenic effect (transient trifluorothymidine resistance in a thymidine kinase heterozygote), but not the stable mutagenic effect (stable 6-thioguanine resistance or trifluorothymidine resistance in a hypoxanthine-guanine phosphoribosyltransferase-proficient cell) induced by BrdUrd. 5-AzaC did not affect the induction nor expression of mutation induced by several other chemical mutagens at either the tk or hgprt loci. Inhibition of pseudomutation by 5-AzaC did not appear to be caused by a number of potential confounding factors. Although significant changes in the levels of DNA methylation were detected by HPLC analysis in BrdUrd-treated cells, the dose response for inhibition of pseudomutation by 5-AzaC was correlated with a significant decrease in 5-methylcytidine levels. These results and additional data in the literature have led us to postulate a novel mechanism in which the substitution of BrdUrd in a TpG dinucleotide(s) may serve as a substrate for non-heritable methylation and hence transiently inactivate tk gene expression.[1]


WikiGenes - Universities