The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Combination Mammalian Target of Rapamycin Inhibitor Rapamycin and HSP90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin Has Synergistic Activity in Multiple Myeloma.

PURPOSE: The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) pathway and the heat shock protein family are up-regulated in multiple myeloma and are both regulators of the cyclin D/retinoblastoma pathway, a critical pathway in multiple myeloma. Inhibitors of mTOR and HSP90 protein have showed in vitro and in vivo single-agent activity in multiple myeloma. Our objective was to determine the effects of the mTOR inhibitor rapamycin and the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on multiple myeloma cells. EXPERIMENTAL DESIGN: Multiple myeloma cell lines were incubated with rapamycin (0.1-100 nmol/L) and 17-AAG (100-600 nmol/L) alone and in combination. RESULTS: In this study, we showed that the combination of rapamycin and 17-AAG synergistically inhibited proliferation, induced apoptosis and cell cycle arrest, induced cleavage of poly(ADP-ribose) polymerase and caspase-8/caspase-9, and dysregulated signaling in the phosphatidylinositol 3-kinase/AKT/mTOR and cyclin D1/retinoblastoma pathways. In addition, we showed that both 17-AAG and rapamycin inhibited angiogenesis and osteoclast formation, indicating that these agents target not only multiple myeloma cells but also the bone marrow microenvironment. CONCLUSIONS: These studies provide the basis for potential clinical evaluation of this combination for multiple myeloma patients.[1]

References

  1. Combination Mammalian Target of Rapamycin Inhibitor Rapamycin and HSP90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin Has Synergistic Activity in Multiple Myeloma. Francis, L.K., Alsayed, Y., Leleu, X., Jia, X., Singha, U.K., Anderson, J., Timm, M., Ngo, H., Lu, G., Huston, A., Ehrlich, L.A., Dimmock, E., Lentzsch, S., Hideshima, T., Roodman, G.D., Anderson, K.C., Ghobrial, I.M. Clin. Cancer Res. (2006) [Pubmed]
 
WikiGenes - Universities