The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of monocarboxylate transport in human kidney HK-2 cells.

The objectives of this study were to characterize the expression and function of monocarboxylate transporters (MCTs) in human kidney HK-2 cells and to compare the expression of MCTs in HK-2 cells to that found in human kidney. mRNA and protein expression of MCTs were determined by RT-PCR and Western analyses, respectively, while immunofluorescence staining was used to determine the membrane localization of MCT1. The driving force, transport kinetics, and inhibition of two MCT substrates, D-lactate and butyrate, were characterized in HK-2 cells. mRNA of MCT1, -2, -3, -4 isoforms were present in HK-2 cells and in human kidney cortex. MCT1 was present predominantly on the basal membranes of HK-2 cells. The cellular uptake of D-lactate and butyrate exhibited pH- and concentration-dependence (D-lactate, Km of 26.5 +/- 2.2 mM and Vmax of 72.0 +/- 14.5 nmol mg-1 min-1; butyrate, Km of 0.8 +/- 0.3 mM, Vmax of 29.3 +/- 2.5 nmol mg-1 min-1, and a diffusional clearance of 2.1 microL mg-1 min-1). The uptake of D-lactate and butyrate by HK-2 cells was inhibited by MCT analogues and the classical MCT inhibitors alpha-cyano-4-hydroxycinnamate, pCMB, and phloretin. The uptake of D-lactate and butyrate by HK-2 cells significantly decreased after transfection with small-interference RNA for MCT1. In summary, MCTs were present in both HK-2 cells and human kidney cortex, and HK-2 cells exhibited polarized MCT expression and pH-dependent transport of D-lactate and butyrate. Our results also support the usefulness of HK-2 cells as an in vitro model for studying monocarboxylate transport in renal proximal tubule cells.[1]

References

  1. Characterization of monocarboxylate transport in human kidney HK-2 cells. Wang, Q., Lu, Y., Yuan, M., Darling, I.M., Repasky, E.A., Morris, M.E. Mol. Pharm. (2006) [Pubmed]
 
WikiGenes - Universities