Functional expression of a Drosophila antifungal peptide in Escherichia coli.
Drosomycin is a key effector molecule involved in Drosophila innate immunity against fungal infection. This peptide is composed of 44 residues stabilized by four disulfide bridges. As the first step towards the understanding of the molecular basis for its specific antifungal activity, rapid and efficient production of the wild-type peptide and its mutants is needed. Here, we report a pGEX system for high-level expression of recombinant Drosomycin. The fusion Drosomycin protein with a carrier of Glutathione S-transferase ( GST) was initially purified by affinity chromatography followed by Enterokinase cleavage. The digested product was separated by gel filtration and reverse phase HPLC. Mass spectrometry and circular dichroism spectroscopy analysis revealed that the recombinant peptide has identical molecular weight and correct structural conformation to native Drosomycin. Classical inhibition assay showed clear antifungal activity against Neurospora crassa with the IC(50) of 1.0muM. Successful expression of the CSalphabeta-type antifungal peptide in E. coli offers a basis for further studying its functional surface by alanine scanning mutagenesis strategy. Also, our work should be helpful in developing this peptide to an antifungal drug.[1]References
- Functional expression of a Drosophila antifungal peptide in Escherichia coli. Yuan, Y., Gao, B., Zhu, S. Protein Expr. Purif. (2007) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg