The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Metabolic Engineering of Pseudomonas putida for Methylmalonyl-CoA Biosynthesis to Enable Complex Heterologous Secondary Metabolite Formation.

An operon consisting of three open reading frames, annotated in silico as methylmalonyl-CoA (mm-CoA) epimerase, mm-CoA mutase (MCM), and meaB, was identified in the sequencing project of the myxobacterium Sorangium cellulosum So ce56. This putative MCM pathway operon was subcloned from a bacterial artificial chromosome by Red/ET recombineering onto a minimal replicon derived from p15A. This plasmid was modified for integration and heterologous expression in Pseudomonas putida to enable the production of complex secondary metabolites requiring mm-CoA as precursor. Methylmalonate was identified in the recombinant P. putida strain by an analysis method based on gas chromatography/ mass spectrometry. The engineered strain is able to synthesize polyketides requiring mm-CoA as an extender unit, which was demonstrated by the production of myxothiazol after integration of the biosynthetic gene cluster into the chromosome, followed by induction of expression.[1]

References

  1. Metabolic Engineering of Pseudomonas putida for Methylmalonyl-CoA Biosynthesis to Enable Complex Heterologous Secondary Metabolite Formation. Gross, F., Ring, M.W., Perlova, O., Fu, J., Schneider, S., Gerth, K., Kuhlmann, S., Stewart, A.F., Zhang, Y., M??ller, R. Chem. Biol. (2006) [Pubmed]
 
WikiGenes - Universities