The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Conformation-dependent Stability of Junctophilin 1 ( JP1) and Ryanodine Receptor Type 1 (RyR1) Channel Complex Is Mediated by Their Hyper-reactive Thiols.

Junctophilin 1 ( JP1), a 72-kDa protein localized at the skeletal muscle triad, is essential for stabilizing the close apposition of T-tubule and sarcoplasmic reticulum membranes to form junctions. In this study we report that rapid and selective labeling of hyper-reactive thiols found in both JP1 and ryanodine receptor type 1 (RyR1) with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin, a fluorescent thiol-reactive probe, proceeded 12-fold faster under conditions that minimize RyR1 gating (e.g. 10 mm Mg(2+)) compared with conditions that promote high channel activity (e.g. 100 mum Ca(2+), 10 mm caffeine, 5 mm ATP). The reactivity of these thiol groups was very sensitive to oxidation by naphthoquinone, H(2)O(2), NO, or O(2), all known modulators of the RyR1 channel complex. Using preparative SDS-PAGE, in-gel tryptic digestion, high pressure liquid chromatography, and mass spectrometry-based peptide sequencing, we identified 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin-thioether adducts on three cysteine residues of JP1 (101, 402, and 627); the remaining five cysteines of JP1 were unlabeled. Co-immunoprecipitation experiments demonstrated a physical interaction between JP1 and RyR1 that, like thiol reactivity, was sensitive to RyR1 conformation and chemical status of the hyper-reactive cysteines of JP1 and RyR1. These findings support a model in which JP1 interacts with the RyR1 channel complex in a conformationally sensitive manner and may contribute integral redox-sensing properties through reactive sulfhydryl chemistry.[1]

References

  1. Conformation-dependent Stability of Junctophilin 1 (JP1) and Ryanodine Receptor Type 1 (RyR1) Channel Complex Is Mediated by Their Hyper-reactive Thiols. Phimister, A.J., Lango, J., Lee, E.H., Ernst-Russell, M.A., Takeshima, H., Ma, J., Allen, P.D., Pessah, I.N. J. Biol. Chem. (2007) [Pubmed]
 
WikiGenes - Universities